About Geogebra-Kinematic Synthesis of Mechanisms

The animated four-bar linkage FHJD is constructed using dimensions as the quadrilateral ABCD. The dynamic geometry software Geogebra maintains the dimensions of FHJD as the points of ABCD are moved. The result is that the animated linkage changes to match the new dimensions. This can be seen in following Movie.  For more information see Kinematic Synthesis of Mechanisms.

Chapter 6 Animations-Kinematic Synthesis of Mechanisms

Here are the eight Movies in Chapter 6 of Kinematic Synthesis of Mechanisms.

Movie 6.1

Movie 6.2

Movie 6.3

Movie 6.4

Movie 6.5

Movie 6.6

Movie 6.7

Movie 6.8

Chapter 5 Animations-Kinematic Synthesis of Mechanisms

Here are the four Movies in Chapter 5 of Kinematic Synthesis of Mechanisms.

Movie 5.1

Movie 5.2

Movie 5.3

Movie 5.4

Chapter 4 Animations-Kinematic Synthesis of Mechanisms

Here are the four Movies in Chapter 4 of Kinematic Synthesis of Mechanisms.

Movie 4.1

Movie 4.2

Movie 4.3

Movie 4.4

Chapter 3 Animations-Kinematic Synthesis of Mechanisms

Here are the four Movies in Chapter 3 of Kinematic Synthesis of Mechanisms.

Movie 3.1

Movie 3.2

Movie 3.3

Movie 3.4

Chapter 2 Animations-Kinematic Synthesis of Mechanisms

Here are the six Movies in Chapter 2 of Kinematic Synthesis of Mechanisms.

Movie 2.1

Movie 2.2

Movie 2.3

Movie 2.4

Movie 2.5

Movie 2.6

Kinematic Synthesis of Mechanisms: A project based approach

This book is an introduction to the geometric theory used to design linkage systems that are critical components of machines ranging from vehicle suspensions to robot arms. The focus throughout is on graphical synthesis of linkages to control the movement of the legs for a walking machine.

Select this link to see the Kindle Interactive version in Amazon

Select to see this book in Apple Books

Select for the print version in Amazon.

Increasingly complicated walking machines obtained from patent drawings, art and technology are used to motivate the theory. Starting with legs formed by rotating cranks, we move to legs constructed from four bar linkages with specially shaped coupler curves. This leads to a search for coupler points that have near straight line trajectories, and motivates constructions for the inflection circle and cubic of stationary curvature. We also consider cognate linkages and those with symmetric coupler curves.

The use of an RR chain controlled by the coupler of a four-bar linkage is our introduction to six-bar linkages. Then skew pantographs that provide scaling and reorientation of a coupler curve for better walking movement yields eight-bar linkages. The legs designed by Theo Jensen and Amanda Gassaei are shown to implement four bar function generators that control the joint movement of an RR chain. This leads to graphical two and three position synthesis of four-bar function generators, which are applied to the design of legs with two and three specified configurations.

We end with a description of the duty factor and support pattern needed for two, four and six legged walking machines. The challenge of steering and suspension is left for the future.

Chop Wood Carry Water by R. A. White

R. A. White is the author of Chop Wood Carry Water and Superluminal.  He often writes under the pseudonym R. W. Frost.  Here is his IMDB page.  He is a lecturer in the theater arts program at UCLA, and the director of the Toni Martini Variety Hour.

2013 Energy Invitational

Smitty’s Video Lectures on Racecar Engineering

Here are Smitty’s video lectures on Introduction to Racecar Engineering assembled into one post. I am sure you will find these 20 videos to be of great value.

01 Getting Started

02 Weight and Balance

03 Strength and Stiffness

04 Chassis Design

05 Suspension Design

06 Shock Absorbers

07 More on Suspensions

08 Springs

09 Steering

10 Caster

11 King Pin Inclination

12 Toe and Camber

13 Tires

14 Transmission

15 Electronic Fuel Injection

16 Performance Ideals

17 Team Don’ts

18 Team Do’s

19 Smitty’s Library

20 Thank you