Fall 2019 Mechanical Walker Prototypes

I was pleased to have an enthusiastic group of graduate students work with me on the design of four-legged walkers as the final project for MAE 245 Kinematic Synthesis. Each of the teams designed a four-bar linkage using Curvature Theory to obtain a coupler curve with a flat portion that could be used as the foot trajectories for the legs of the walker.

Then, they placed the coupler curve in position to form the feet of a walker by using a skew pantograph for the front legs and rectilinear six-bar linkages for the rear legs. I required this particular choice of the type of legs, simply because I was not sure which would work better.

This video shows the operation of their design prototypes. They all work as designed, though we have more work to do on their fabrication in order to improve performance.

Four-legged Walkers: Teams 2, 4 and 5

Here are videos of the designs for the four legged mechanical walkers obtained by Teams 2, 4 an 5. This is the final project in my Fall 2019 Kinematic Synthesis course.

Team 2

Mechanical Walker Team 2

Team 4

Mechanical Walker Team 4

Team 5

Mechanical Walker Team 5

Four Legged Mechanical Walker: Teams 1, 3 and 6

Here are videos of the designs for the four legged mechanical walkers obtained by Teams 1, 3 an 6. This is the final project in my Fall 2019 Kinematic Synthesis course.

Team 1

Mechanical Walker designed by Team 1.

Team 3

Mechanical Walker designed by Team 3

Team 6

Mechanical Walker designed by Team 6.

Halloween Display 2019

This video shows how the linkage systems moving spooky decorations designed by my six student teams were combined into a Halloween display.

More Halloween Linkage Designs

The Halloween decorations designed by project teams 4, 5 and 6 can be seen in the video

Halloween Design Project

Students in my MAE 245 Advanced Kinematic Synthesis class have designed Halloween decorations using a four-bar linkage by itself or in combination with a parallelogram or pantograph linkage. You can see the work of teams 1, 2 and 3 in the video:

Walker Group 6

Mechanical Walker Project Animations: Spring 2019

Here are the solid models of some of the walkers designed by UC Irvine students in my Spring 2019 course MAE 183 Kinematic Synthesis of Mechanisms.

Walker Group 1

Walker Group 2

Walker Group 4

Walker Group 6

Walker Group 8

Walker Group 9

Walker Group 10

Leg Mechanism for a Mechanical Walker

This is an animation of the leg mechanism for a mechanical walker designed using function generators to drive the hip and knee joints. A second parallelogram linkage is used to construct a translating leg that allows placement of the foot trajectory where ever the designer chooses.

Three Position Synthesis 2

Construction for Three-Position Synthesis of a Four-Bar Linkage

The graphical construction of a four-bar function generator that coordinates three input and three output angles is presented in the video below. It is possible to coordinate as many as five input-output angles, but this requires numerical calculations using software like our MechGen FG iOS application.

More notes on Kinematic Synthesis    Also see my book Kinematic Synthesis of Mechanisms: a project based approach

MechGen on iPhone

Five Position Synthesis of Four-bar Function Generators

Our MechGen FG iOS application provides five position synthesis for four-bar linkages. A Demo of the iPad version is provided below. It is also available on the iPhone.