## Four-Legged Mechanical Walkers: Spring 2020 Highlights

The design of these four-legged walkers relies on Curvature theory to find a flat-sided coupler curve of a four-bar linkage to be used for the foot trajectory. This coupler curve is repositioned using a skew pantograph. The result is a six-bar leg mechanism. Stable gait for these walkers can be achieved by adding side-to-side foot […]

## The Design of Mechanical Walkers: Spring 2020 Student Projects

While isolated to slow infections of the Coronavirus, over 60 UCI students learned how to apply the principles of Curvature Theory and Finite-Position Synthesis to the design leg mechanisms for mechanical walkers. Their first team project was a four-legged walker that used the coupler curve of a four-bar linkage positioned using a skew-pantograph as the […]

## Fall 2019 Mechanical Walker Prototypes

I was pleased to have an enthusiastic group of graduate students work with me on the design of four-legged walkers as the final project for MAE 245 Kinematic Synthesis. Each of the teams designed a four-bar linkage using Curvature Theory to obtain a coupler curve with a flat portion that could be used as the […]

## Four-legged Mechanical Walkers: Teams 2, 4 and 5

Here are videos of the designs for the four legged mechanical walkers obtained by Teams 2, 4 an 5. This is the final project in my Fall 2019 Kinematic Synthesis course. Team 2 Team 4 Team 5

## Four Legged Mechanical Walker: Teams 1, 3 and 6

Here are videos of the designs for the four legged mechanical walkers obtained by Teams 1, 3 an 6. This is the final project in my Fall 2019 Kinematic Synthesis course. Team 1 Team 3 Team 6

## Halloween Display 2019

This video shows how the linkage systems moving spooky decorations designed by my six student teams were combined into a Halloween display.

The Halloween decorations designed by project teams 4, 5 and 6 can be seen in the video

## Halloween Design Project

Students in my MAE 245 Advanced Kinematic Synthesis class have designed Halloween decorations using a four-bar linkage by itself or in combination with a parallelogram or pantograph linkage. You can see the work of teams 1, 2 and 3 in the video:

## Mechanical Walker Project Animations: Spring 2019

Here are the solid models of some of the walkers designed by UC Irvine students in my Spring 2019 course MAE 183 Kinematic Synthesis of Mechanisms. Walker Group 1 Walker Group 2 Walker Group 4 Walker Group 6 Walker Group 8 Walker Group 9 Walker Group 10

## Leg Mechanism for a Mechanical Walker

This is an animation of the leg mechanism for a mechanical walker designed using function generators to drive the hip and knee joints. A second parallelogram linkage is used to construct a translating leg that allows placement of the foot trajectory where ever the designer chooses.