

Kinematics and Numerical Algebraic Geometry

Charles Wampler

General Motors R&D Center Warren, Michigan, USA

21st Century Kinematics, 8/11-12/2012

Outline

Algebraic Kinematics

- Why most of kinematics is algebraic
- Kinematics in a nutshell

Solving polynomial systems

- Basic polynomial continuation
 - Finding isolated roots
- Numerical algebraic geometry
 - Dealing with positive-dimensional sets
- Bertini software package
- Examples from kinematics
- Short Bertini tutorial

Algebraic Kinematics

- Rigid-body motions form an algebraic set, SE(3)
 - $SE(3) = \{(p,A): p \in \mathbb{R}^3, A \in \mathbb{R}^{3 \times 3}, A^T A = I, \text{ det } A = 1\}$
 - Alternative: Study coordinates, subject to the Study quadric
- The most common joints impose algebraic constraints
- Distance (squared) is also polynomial
 - Cable & tensegrity structures
- ∴ Rigid links + algebraic joints implies *algebraic kinematics*
- Notes:
 - Not all devices have algebraic kinematics:
 - Cams, rolling contact, helical joints
 - Even if not, an algebraic approximation may be quite useful
 - Compliant mechanisms (pseudo-rigid-body model)
 - Most robots, esp. industrial ones, have algebraic kinematics
 - Molecules (incl. proteins) governed by inter-atomic distance constraints have algebraic kinematics

Joints: Lower-order pairs

Example: Serial 6R Robot

ΗM

Example: Parallel Wrists

Input: sliders L₁, L₂
Output: angles θ₁, θ₂
Inverse problem: 2x2=4 solutions
Forward problem: 8 solutions

Big Picture

Solving kinematic equations

 Traditional Elimination (19th Century) Sylvester resultant, dyalitic elimination Advantages Often runs fastest for small problems Disadvantages Hard to derive, esp. for big problems Numerical stability 	 Computer algebra (20th-21st Century) Grobner bases, Kronecker elimination Advantages Advantages Automated Exact for integer or rational coefficients Disadvantages Cannot handle large systems with real parameters Not easily parallelizable Numerical stability 	 Numerical algebraic geometry (20th-21st Century) Polynomial continuation Advantages Advantages Automated Parallelizable – make full use of multinode, multicore processors Can handle large systems with real parameters Robust to special cases Disadvantages
Manfred: "It is essential to use get algebraic pre-processing before app Grobner or numeric methods" My addendum: "In engineering, a always one seeks a numeric answer question is how soon to go numeric	ometric & olying Imost ; at	 Slower on small problems Reliable results but not mathematical proof Gives solutions, not equations

Basic polynomial continuation Finding isolated solution points

11

To find all isolated solutions to the polynomial system $F = \{f_1, \dots, f_N\}$:

Solution paths

• Paths x(t) implicitly defined by homotopy H(x; p(t)) = 0

Parallelizable: each path can be tracked on a different CPU.

Parameter Continuation

- Start system easy in initial parameter space
- Root count may be much lower in target parameter space
- Initial run is 1-time investment for cheaper target runs

Parameter Continuation: 9-pt path synthesis

Numerical Algebraic Geometry Finding & manipulating algebraic sets (points, curves, surfaces,...)

Irreducible Decomposition

Univariate Polynomial	Multivariate System
1 equation, 1 variable	N equations, n variables
Solution points	Irreducible components
Double roots, etc.	Sets with multiplicity
Factorization $c \prod_{i} (x - a_i)^{\mu_i}$	Irreducible decomposition

Numerical Representation			
List of points	List of witness sets		

Basic Construct: Witness Set

- Witness set for irreducible algebraic set A is $\{F, L, L \cap A\}$
 - F is a polynomial system such that A is an irreducible component of V(F)
 - L is a generic linear space of complementary dimension to A
 - L\OA is the witness point set
 d points on a degree d component

A

Numerical Irreducible Decomposition

Witness superset generation

- Work dimension-by-dimension
- Slice for every dimension
- Homotopy finds all isolated solutions at each dimension
- Decomposition
 - Remove "junk" points
 - This gives witness sets by dimension
 - At each dimension, sort witness set into irreducible components
 - This gives the "Numerical Irreducible Decomposition"

For more...

World Scientific, 2005

Software

Ours

- Bertini (v1.3)
 - Numerical algebraic geometry
 - Robust adaptive multiprecision
 - Deflation of sets with multiplicity>1
 - Regeneration
 - Parallel computing option
 - Authors:
 - Bates, Hauenstein, Sommese & W.
- LocalDimFinder
 - Local dimension test
 - Authors:
 - Hauenstein, Sommese & Wampler
- Free downloads at
 - www.nd.edu/~sommese/bertini/

Others

- Hom4PS (v2.0)
 - Isolated solutions only
 - Fast polyhedral
 - Author: T.-Y. Li (MSU)

PHC

- Numerical algebraic geometry
- Polyhedral method
- Author: Jan Verschelde (UIC)

POLSYS_PLP, POLSYS_GLP

- Isolated solutions only
- Linear product homotopies
- Author: Layne Watson (VaTech)

21st Century Kinematics, 8/11-12/2012

<u>GM</u>

Let's see Numerical Algebraic Geometry at work in kinematics

Result for Generic Links

18 rigid structures

• 8 real, 10 complex for this set of links.

•All isolated – can be found with traditional homotopy

Special Links (Roberts Cognates)

Dimension 1:

6th degree four-bar motion

Dimension 0:

1 of 6 isolated (rigid) assemblies

"Kinematotropic" mechanisms

"Boat" 6R mechanism

Solution Properties: Curve and surface that meet

Exceptional Stewart-Gough Platform

Griffis-Duffy platforms

- Case 1: Top & bottom plates are equilateral triangles
 - Degree of top platform motion in Study (dual quaternion) coordinates is 28
 - Degree of path of a tracing point is 40.

- Case 2: In addition, leg lengths equal & plates congruent
 - Factors as 6+(6+6+6)+4=28

Even More Exceptional Stewart-Gough Platform

- As before, but with
 - leg lengths = altitude of base triangle
 - "Foldable Griffis-Duffy Platform"
- Degree 28 component now factors as
 - 3×[2×1]+3×2+4+(4+4+4)
 - We have extracted the *real* parts of these complex components
 - 3 double lines, 3 quadrics, 1 quartic

Solution Properties: exceptional dimension sets w/ multiplicity = 2

Real vs. Complex Dimension

Solution Properties: Isolated real point on a complex curve (double root) 2nd component is a real curve

32

Seoul Nat'l Univ. 3-UPU mechanism

SNU 3-UPU Frank Park 2001 (joints intersect)

Solution Properties: Pose shown is isolated but multiplicity = 4

- What's next?
- Wrap-up
- Bertini demos

- Bertini book in progress
 - (More users' manual than S&W 2005 monograph)
- Bertini open-source release planned
 - (Only executables are available at present)
- Decomposition of real sets
 - Currently, Bertini solves in complex space
 - Fine for nonsingular isolated solutions
 - But for singular points and for real curves, surfaces, etc.,
 - Real sets can start and stop (i.e., turn, fold, etc.)
 - Need to form & solve conditions for where the real points lie inside the complex solution sets
 - Algorithms for curves & surfaces have been developed, but not yet released in Bertini

- Stephenson III w/ prismatic joint added
 - Inputs: θ_2 , a_7
 - Myszka, Murray, Wampler: IDETC, Wed., 11:30am

Wrap-up

Much of kinematics is applied algebraic geometry

- Mechanism space formulation of kinematic problems
- Mechanisms may have:
 - Solutions at different dimensions
 - Higher multiplicity
 - Real dimension different than complex dimension
- Numerical Algebraic Geometry
 - Finds isolated solution points and positive-dimensional solutions
 - "Numerical Irreducible Decomposition"
 - Based on polynomial continuation for finding isolated points
 - Advances in methodology
 - Eqn.-by-Eqn. methods for large systems (Regeneration)
 - Deflation of multiplicities
 - Adaptive multiple precision
 - Parallel computing
 - Bertini v1.3 offers all this & more
- A 21st Century kinematician needs 21st Century tools!
- Bertini demo to follow...

