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Outline 

 Algebraic Kinematics 
 Why most of kinematics is algebraic 
 Kinematics in a nutshell 

 Solving polynomial systems 
 Basic polynomial continuation 

 Finding isolated roots 

 Numerical algebraic geometry 
 Dealing with positive-dimensional sets 

 Bertini software package 

 Examples from kinematics 
 Short Bertini tutorial 
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Algebraic Kinematics 

 Rigid-body motions form an algebraic set, SE(3) 
 SE(3) = {(p,A): pR3, AR3×3, ATA = I,  det A = 1} 

 Alternative: Study coordinates, subject to the Study quadric 
 

 The most common joints impose algebraic constraints  
 

 Distance (squared) is also polynomial 
 Cable & tensegrity structures 

 

 Rigid links + algebraic joints implies algebraic kinematics 
 

 Notes: 
 Not all devices have algebraic kinematics: 

 Cams, rolling contact, helical joints 

 Even if not, an algebraic approximation may be quite useful 
 Compliant mechanisms (pseudo-rigid-body model) 

 Most robots, esp. industrial ones, have algebraic kinematics 
 Molecules (incl. proteins) governed by inter-atomic distance constraints have 

algebraic kinematics 
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Joints: Lower-order pairs 

f=1, c=5 

P R H 

Prismatic Rotational Helical (Screw) 

f=2, c=4 

C 

Cylindrical 

f=3, c=3 

E S 

Plane Sphere 

 f = freedom 

c = constraint          

       in SE(3) 

Not Algebraic 
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Example: Serial 6R Robot 
 Parameters given: 

 Length ai , offset di , twist αi 

 Input: 
 Rotation angle at each 

joint, θi 

 Output: 
 Position & orientation of 

end of arm, Tend 

 Forward problem: 
 Unique answer 

 Inverse problem: 
 Up to 16 solutions 
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Example: Parallel Wrists 

Carricato & Parenti-Castelli 

IJRR, 2004 

NASA R1 
patent 

almost 

Input: sliders L1, L2 

Output: angles θ1, θ2 

Inverse problem: 2x2=4 solutions 

Forward problem: 8 solutions 
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Big Picture 

:

J(x,q) K(x,q) 
input output 

Mechanism 
parameter 

space  
(link geometry) 

Mechanism Space 
(parameterized motions) 

Solution set of 
polynomial system 

F(x,q)=0, 

F: CNCm 
 Cn 

qqx ),(
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Big Picture 

Forward kinematics Inverse kinematics 

INPUT OUTPUT 

Workspace 
analysis 

Mechanism 
synthesis 

DESIGN 
PARAMETERS 
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Solving kinematic equations 

 Traditional 
Elimination  
(19th Century) 
 Sylvester resultant, 

dyalitic elimination 
 Advantages 

 Often runs fastest 
for small 
problems 

 
 Disadvantages 

 Hard to derive, 
esp. for big 
problems 

 Numerical stability 

 Computer algebra  
(20th-21st Century) 
 Grobner bases, 

Kronecker elimination 
 

 Advantages 
 Automated 
 Exact for integer or 

rational coefficients 

 
 Disadvantages 

 Cannot handle large 
systems with real 
parameters 

 Not easily 
parallelizable 

 Numerical stability 
of the final solution 
step 

 Gives equations not 
solutions 

 

 Numerical algebraic 
geometry  
(20th-21st Century) 
 Polynomial 

continuation 
 

 Advantages 
 Automated 
 Parallelizable – 

make full use of 
multinode, multicore 
processors 

 Can handle large 
systems with real 
parameters 

 Robust to special 
cases 

 
 Disadvantages 

 Slower on small 
problems 

 Reliable results but 
not mathematical 
proof 

 Gives solutions, not 
equations 
 

 
 

Manfred: “It is essential to use geometric & 
algebraic pre-processing before applying 
Grobner or numeric methods” 

My addendum: “In engineering, almost 
always one seeks a numeric answer; at 
question is how soon to go numeric.” 
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Part II 

 Basic polynomial continuation 

 Finding isolated solution points 
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Basic Total-degree Homotopy 

To find all isolated solutions to the polynomial 
system F = {f1,…,fN}: 
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Solution paths 

 Paths x(t) implicitly defined by homotopy 
  H (x; p(t)) = 0 

Nongeneric  

 

 

 

 
Parameter space pfinal 

 

 
 

pstart 
t 

x

Parallelizable: each path can be tracked on a different CPU. 
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Parameter Continuation 

initial 
parameter 

space 

target 
parameter 

space 

 Start system easy in initial parameter space 

 Root count may be much lower in target parameter space 

 Initial run is 1-time investment for cheaper target runs 

start 
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Parameter Continuation: 9-pt path synthesis 

 Total degree 
 78=5,764,801 

 Multihomogeneous 
 286,720 

 Symmetry 
 143,360 

 Parameter 
homotopy 
 1442 paths 

143,360 

1442 

1442 

1442 

1442 History 
Formulation: Alt 1923 

First partial solution:  

Roth 1963  

“bootstrap method” 

Full solution:  

W., Morgan, & 
Sommese 1992  
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Part III 

 Numerical Algebraic Geometry 
 Finding & manipulating algebraic 

sets (points, curves, surfaces,…) 
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Irreducible Decomposition 

Univariate Polynomial Multivariate System 

1 equation, 1 variable N equations, n variables 

Solution points Irreducible components 

Double roots, etc. Sets with multiplicity 

Factorization Irreducible decomposition 

Numerical Representation 

List of points List of witness sets 

  i

i

iaxc


 
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Basic Construct: Witness Set 

 Witness set for irreducible 
algebraic set A is {F,L,LՈA} 

 

 F is a polynomial system such 
that A is an irreducible 
component of V(F) 

 

 L is a generic linear space of 
complementary dimension to A 

 

 LՈA is the witness point set 
 d points on a degree d component 

 

 

 

A 

L 
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Numerical Irreducible Decomposition 

 Witness superset generation 
 Work dimension-by-dimension 
 Slice for every dimension 
 Homotopy finds all isolated 

solutions at each dimension 
 

 Decomposition 
 Remove “junk” points 

 This gives witness sets by 
dimension 

 At each dimension, sort witness 
set into irreducible components 

 This gives the “Numerical 
Irreducible Decomposition” 
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For more… 

World Scientific, 2005 
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Software 

Ours 
 Bertini (v1.3) 

 Numerical algebraic geometry 
 Robust adaptive multiprecision 
 Deflation of sets with 

multiplicity>1 
 Regeneration 
 Parallel computing option 

 Authors:  
 Bates, Hauenstein, Sommese & W. 

 

 LocalDimFinder 
 Local dimension test 
 Authors:  

 Hauenstein, Sommese & Wampler 

 

 Free downloads at 
 www.nd.edu/~sommese/bertini/ 

Others 
 Hom4PS (v2.0) 

 Isolated solutions only 
 Fast polyhedral 
 Author: T.-Y. Li (MSU) 

 

 PHC 
 Numerical algebraic geometry 
 Polyhedral method 
 Author: Jan Verschelde (UIC) 

 
 POLSYS_PLP, POLSYS_GLP 

 Isolated solutions only 
 Linear product homotopies 
 Author: Layne Watson (VaTech) 
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Test Run: Lotka-Volterra Systems 
 Discretized PDE (finite differences) population model 

 Order n system has 8n sparse bilinear equations 

Total degree = 28n 

 

Polyhedral (mixed volume) 
 = 24n is exact 
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Test Run: Lotka-Volterra PDE Systems 
 Order n system has 8n sparse bilinear equations 

 Time Summary -- Single Processor 

-1

0

1

2

3

4

1 2 3 4 5

PHC

HOM4PS-2.0

Bertini

Order, n 

1 sec 

1/60 sec 

1 min 

1 hour 

2.5 day  

5 mos 
PHC 

Hom4PS 
Bertini (polyhedral) 

(regeneration) 

Total degree = 28n 

 

Polyhedral (mixed volume) 
 = 24n is exact 
(@n=5, 40 eqs, ~106 roots) 

 Regeneration parallelizes easily (polyhedral does not) 

Credit: Jon Hauenstein 2009 
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Part IV: Examples 

 Let’s see Numerical Algebraic Geometry 
at work in kinematics 
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Example: 7-bar Structure 

Problem: 

Assemble these 7  
pieces, as labeled. 
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Result for Generic Links 

18 rigid 
structures 

• 8 real, 10 complex 

for this set of links. 

•All isolated – can be 
found with traditional 
homotopy 
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Special Links (Roberts Cognates) 

Dimension 1: 

6th degree four-bar motion 

Dimension 0: 

1 of 6 isolated (rigid) assemblies 

Solution Properties:  
different dimensions 

exceptional dimension 
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“Kinematotropic” mechanisms 

Solution Properties:  
Curve and surface that meet 

“Boat” 6R mechanism 
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Exceptional Stewart-Gough Platform 

 Case 1: Top & 
bottom plates are 
equilateral 
triangles 
 Degree of top 

platform motion 
in Study (dual 
quaternion) 
coordinates is 28 

 Degree of path of 
a tracing point is 
40. 

 Case 2: In addition, leg lengths equal & 
plates congruent 
 Factors as 6+(6+6+6)+4=28 

This is an 
algebraic 
curve of 

degree 40 

Griffis-Duffy platforms 
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Even More Exceptional Stewart-Gough Platform 

 As before, but with  
 leg lengths = altitude of base 

triangle 

 “Foldable Griffis-Duffy Platform” 

 Degree 28 component now 
factors as  
 3[21]+32+4+(4+4+4) 

 We have extracted the real parts 
of these complex components 
 3 double lines, 3 quadrics, 1 quartic Solution Properties:  

exceptional dimension 

sets w/ multiplicity = 2 

quarticNew.wmv
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Real vs. Complex Dimension 

12-bar mechanism 

Solution Properties:  
Isolated real point on a 
complex curve (double root) 

2nd component is a real curve 
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Seoul Nat’l Univ. 3-UPU mechanism 

Solution Properties:  
Pose shown is isolated 
but multiplicity = 4 

Tsai 3-UPU 
Translational platform 

1996 

SNU 3-UPU 

Frank Park 

2001 

(joints intersect)  
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Part V 

 What’s next?  

 Wrap-up 

 Bertini demos 
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What’s Next? 

 Bertini book in progress 
 (More users’ manual than S&W 2005 monograph) 

 Bertini open-source release planned 
 (Only executables are available at present) 

 Decomposition of real sets 
 Currently, Bertini solves in complex space 

 Fine for nonsingular isolated solutions 

 But for singular points and for real curves, surfaces, etc.,  
 Real sets can start and stop (i.e., turn, fold, etc.) 

 Need to form & solve conditions for where the real points lie 
inside the complex solution sets 

 Algorithms for curves & surfaces have been developed, 
but not yet released in Bertini 
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Real Surface = 2DOF Motion 

 Stephenson III w/ prismatic joint added 
 Inputs: 2, a7 

 Myszka, Murray, Wampler: IDETC, Wed., 11:30am 

 

2 

a
7
 

Turning Point Curve  
(degree 36; bidegree 24+12) 
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Wrap-up 

 Much of kinematics is applied algebraic geometry 
 Mechanism space formulation of kinematic problems 
 Mechanisms may have: 

 Solutions at different dimensions 
 Higher multiplicity 
 Real dimension different than complex dimension 

 Numerical Algebraic Geometry 
 Finds isolated solution points and positive-dimensional solutions 

 “Numerical Irreducible Decomposition” 
 Based on polynomial continuation for finding isolated points 

 Advances in methodology 
 Eqn.-by-Eqn. methods for large systems (Regeneration) 
 Deflation of multiplicities 
 Adaptive multiple precision 
 Parallel computing 

 Bertini v1.3 offers all this & more 

 A 21st Century kinematician needs 21st Century tools! 
 Bertini demo to follow… 


