Kinematics and Numerical Algebraic Geometry

Charles Wampler

General Motors R\&D Center
Warren, Michigan, USA

Credits

- Long-Time Collaborator:
- Andrew Sommese, Univ. of Notre Dame - "Bertini" Team
- A.S. \& C.W. and...
- Dan Bates, Colorado State Univ.
- Jon Hauenstein, North Carolina State Univ.
- Algebraic Kinematics
- Why most of kinematics is algebraic
- Kinematics in a nutshell
- Solving polynomial systems
- Basic polynomial continuation
- Finding isolated roots
- Numerical algebraic geometry
- Dealing with positive-dimensional sets
- Bertini software package
- Examples from kinematics
- Short Bertini tutorial

Algebraic Kinematics

- Rigid-body motions form an algebraic set, $\operatorname{SE}(3)$
- $\operatorname{SE}(3)=\left\{(p, A): p \in \mathrm{R}^{3}, A \in \mathrm{R}^{3 \times 3}, A^{\mathrm{T}} A=\mathrm{I}, \operatorname{det} A=1\right\}$
- Alternative: Study coordinates, subject to the Study quadric
- The most common joints impose algebraic constraints
- Distance (squared) is also polynomial
- Cable \& tensegrity structures
- \therefore Rigid links + algebraic joints implies algebraic kinematics
- Notes:
- Not all devices have algebraic kinematics:
- Cams, rolling contact, helical joints
- Even if not, an algebraic approximation may be quite useful
- Compliant mechanisms (pseudo-rigid-body model)
- Most robots, esp. industrial ones, have algebraic kinematics
- Molecules (incl. proteins) governed by inter-atomic distance constraints have algebraic kinematics

Joints: Lower-order pairs

$f=$ freedom
$c=$ constraint in $\mathrm{SE}(3)$

Example: Serial 6R Robot

- Parameters given:
- Length a_{i}, offset d_{i}, twist α_{i}
- Input:
- Rotation angle at each joint, θ_{i}
- Output:
- Position \& orientation of end of arm, $\mathrm{T}_{\text {end }}$

$$
\begin{aligned}
& T_{\text {end }}=T_{1} \cdot T_{2} \cdot T_{3} \cdot T_{4} \cdot T_{5} \cdot T_{6} \\
& T_{i}=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\
s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- Unique answer
- Inverse problem:
- Up to 16 solutions

Lung-Wen Tsai \& Alec Morgan ASME Melville Medal, 1985

Example: Parallel Wrists

Fig. 1. A 2-DoF fully parallel wrist of general geometry.

Input: sliders $\mathrm{L}_{1}, \mathrm{~L}_{2}$
Output: angles θ_{1}, θ_{2}
\longleftarrow Inverse problem: $2 \times 2=4$ solutions
-Forward problem: 8 solutions

Big Picture

$$
\pi:
$$

$$
(x, q) \mapsto q
$$

Mechanism parameter space
(link geometry)

Big Picture

Solving kinematic equations

- Computer algebra (20th-21 ${ }^{\text {st }}$ Century)
- Grobner bases, Kronecker elimination
- Advantages
- Automated
- Exact for integer or rational coefficients
- Disadvantages
- Hard to derive, esp. for big problems
- Numerical stability

Manfred: "It is essential to use geometric \& algebraic pre-processing before applying Grobner or numeric methods"

My addendum: "In engineering, almost always one seeks a numeric answer; at question is how soon to go numeric."

Part II

- Basic polynomial continuation
- Finding isolated solution points

Basic Total-degree Homotopy

To find all isolated solutions to the polynomial system $F=\left\{\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{N}}\right\}$:

Number of paths to track $=d_{1} \cdot d_{2} \cdots d_{N}$

Solution paths

Paths $x(t)$ implicitly defined by homotopy $H(x ; p(t))=0$

Parallelizable: each path can be tracked on a different CPU.

Parameter Continuation

- Start system easy in initial parameter space
- Root count may be much lower in target parameter space
- Initial run is 1-time investment for cheaper target runs

Parameter Continuation: 9-pt path synthesis

- Total degree
- ${ }^{88}=5,764,801$
- Multihomogeneous
- 286,720
- Symmetry
- 143,360
- Parameter homotopy
- 1442 pathis

Part III

- Numerical Algebraic Geometry
- Finding \& manipulating algebraic sets (points, curves, surfaces,...)

Irreducible Decomposition

Univariate Polynomial	Multivariate System	
1 equation, 1 variable	N equations, n variables	
Solution points	Irreducible components	
Double roots, etc.	Sets with multiplicity	
Factorization $c \prod_{i}\left(x-a_{i}\right)^{\mu_{i}}$	Irreducible decomposition	
Numerical Representation		
List of points	List of witness sets	

Basic Construct: Witness Set

- Witness set for irreducible algebraic set A is $\{F, L, L \cap A\}$
- F is a polynomial system such that A is an irreducible component of $V(F)$
- L is a generic linear space of complementary dimension to A
- $L \cap A$ is the witness point set

- d points on a degree d component

Numerical Irreducible Decomposition

- Witness superset generation
- Work dimension-by-dimension
- Slice for every dimension
- Homotopy finds all isolated solutions at each dimension
- Decomposition
- Remove "junk" points
- This gives witness sets by dimension
- At each dimension, sort witness set into irreducible components
- This gives the "Numerical Irreducible Decomposition"

For more...

The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science

Andrew J. Sommese • Charles W. Wampler, II

World Scientific, 2005

Software

Ours

- Bertini (v1.3)
- Numerical algebraic geometry
- Robust adaptive multiprecision
- Deflation of sets with multiplicity>1
- Regeneration
- Parallel computing option
- Authors:
- Bates, Hauenstein, Sommese \& W.
- LocalDimFinder
- Local dimension test
- Authors:
- Hauenstein, Sommese \& Wampler
- Free downloads at
- www.nd.edu/~sommese/bertini/

Others

- Hom4PS (v2.0)
- Isolated solutions only
- Fast polyhedral
- Author: T.-Y. Li (MSU)
- PHC
- Numerical algebraic geometry
- Polyhedral method
- Author: Jan Verschelde (UIC)
- POLSYS_PLP, POLSYS_GLP
- Isolated solutions only
- Linear product homotopies
- Author: Layne Watson (VaTech)

Test Run: Lotka-Volterra Systems

- Discretized PDE (finite differences) population model - Order n system has $8 n$ sparse bilinear equations

--Total Degree
---2-Homogeneous
* Polyhedral
-»-Regeneration

Total degree $=2^{8 n}$
Polyhedral (mixed volume)
$=2^{4 n}$ is exact

Test Run: Lotka-Volterra PDE Systems

- Order n system has $8 n$ sparse bilinear equations
- Time Summary --(Single)Processor

Credit: Jon Hauenstein 2009

■ Regeneration parallelizes easily (polyhedral does not)

Part IV: Examples

- Let's see Numerical Algebraic Geometry at work in kinematics

Example: 7-bar Structure

Result for Generic Links

18 rigid structures

- 8 real, 10 complex for this set of links.
-All isolated - can be found with traditional homotopy

Special Links (Roberts Cognates)

Solution Properties: -different dimensions ■exceptional dimension

Dimension 1:
$6^{\text {th }}$ degree four-bar motion

Dimension 0:
1 of 6 isolated (rigid) assemblies

"Kinematotropic" mechanisms

"Boat" 6R mechanism

Solution Properties:

-Curve and surface that meet

Exceptional Stewart-Gough Platform

Griffis-Duffy platforms

- Case 1: Top \& bottom plates are equilateral triangles
- Degree of top platform motion in Study (dual quaternion) coordinates is 28
- Degree of path of a tracing point is 40.

- Case 2: In addition, leg lengths equal \& plates congruent
- Factors as 6+(6+6+6)+4=28

Even More Exceptional Stewart-Gough Platform Minco

- As before, but with
- leg lengths = altitude of base triangle
- "Foldable Griffis-Duffy Platform"
- Degree 28 component now factors as

- $3 \times[2 \times 1]+3 \times 2+4+(4+4+4)$
- We have extracted the rea/parts of these complex components
- 3 double lines, 3 quadrics, 1 quartic

Real vs. Complex Dimension

The real solutions of

$$
y^{2}+x^{2}(x-1)(x-2)
$$

12-bar mechanism
Solution Properties:

- Isolated real point on a complex curve (double root)
$\square 2^{\text {nd }}$ component is a real curve

Seoul Nat'I Univ. 3-UPU mechanism

SNU 3-UPU

Frank Park 2001
(joints intersect)

Solution Properties:
-Pose shown is isolated but multiplicity $=4$

- What's next?
 - Wrap-up
 - Bertini demos

What's Next?

- Bertini book in progress
- (More users' manual than S\&W 2005 monograph)
- Bertini open-source release planned
- (Only executables are available at present)
- Decomposition of real sets
- Currently, Bertini solves in complex space
- Fine for nonsingular isolated solutions
- But for singular points and for real curves, surfaces, etc.,
- Real sets can start and stop (i.e., turn, fold, etc.)
- Need to form \& solve conditions for where the real points lie inside the complex solution sets
- Algorithms for curves \& surfaces have been developed, but not yet released in Bertini

Real Surface $=2$ DOF Motion

- Stephenson III w/ prismatic joint added
- Inputs: θ_{2}, a_{7}
- Myszka, Murray, Wampler: IDETC, Wed., 11:30am

Turning Point Curve

Wrap-up

Much of kinematics is applied algebraic geometry

- Mechanism space formulation of kinematic problems
- Mechanisms may have:
- Solutions at different dimensions
- Higher multiplicity
- Real dimension different than complex dimension
- Numerical Algebraic Geometry
- Finds isolated solution points and positive-dimensional solutions
- "Numerical Irreducible Decomposition"
- Based on polynomial continuation for finding isolated points
- Advances in methodology
- Eqn.-by-Eqn. methods for large systems (Regeneration)
- Deflation of multiplicities
- Adaptive multiple precision
- Parallel computing
- Bertini v1.3 offers all this \& more
- A $21^{\text {st }}$ Century kinematician needs $21^{\text {st }}$ Century tools!
- Bertini demo to follow...

