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m University of Bologna (UoB), Bologna (1088)
about 120000 students
Engeneering: 12000 students
Mechanical Engineering Department
m full professors: 20
m associate professors: 25
m assistant professors: 30
research assistants: 20
s PhD students 60
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Fields of interest:

 Teory of mechanisms and machines
 kinematics and dynamics of open and closed chains
e singularities
e joint clearance
e compliant mechanisms
« electroactive polymers (EAP)

« Biomechanics
» Articular prostheses (internal prostheses)

* Prosthetic arms (external prostheses)

e Orthoses
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m |Institutions:

Department of Mechanical Engineering — DIEM, Bologna
Rizzoli Orhopaedic Institute (IOR), Bologna

Oxford Orthopaedic Engineering Centre (OOEE), University of
Oxford

INAIL Prostetic Center (IPC) , Budrio, Bologna,

m People:

- DIEM: Di Gregorio, Corazza, Venanzi, Cocconcelli, Ottoboni, Chebbi,
Vertechy, Carricato, Troncossi, Paganelli, Corazza, Sancisi, Franci,
Conconi, Caminati, Baldisserri

- |OR: Catani, Leardini, Giannini, ....
- OOEE: O’Connor, Feikes, ....
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JOINT MODELLING

Motivations and applications:

 Definition of surgical and diagnostic procedures for joint disorders
caused by injuries and/or diseases

» Assessment of the role of the joint biological structures in the joint
characteristics in normal and pathological condition

» Prosthesis and orthosis design
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Simple Kinematic model - 1
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Simple Kinematic model - 2
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Complex Kinematic models : knee (model M1)
* TF model
s B\c/ "-_':_:.j? B. __,_ B | ) = Knee model
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SUMMARY

e Introduction
 Passive motion of diarthrodial joints
« Joint modelling

* Previous approaches for the modelling of diarthrodial

e Tho naw A ronar (cvunthoacic nf anrivalant moarhaniceme)
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e Applicatio
* Results

e Conclusions
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THE PASSIVE MOTION OF DIARTHRODIAL JOINTS

The motion of the joint under virtually
unloaded condition

Importance:
» Deeper understanding of the joint kinematics

» Deeper understanding of the stabilizing role of articular components
Characteristics:

 Complex and repeatable spatial motion

» Guided by few structures at a time (isometric fibres and articular
contacts)

n-DoF Motion | — n-DoF (parallel) mechanism

For instance, for the knee and the ankle n=1

1-DoF Motion —> 1-DoF (parallel) mechanism
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JOINT MODELLING

Two approaches for joint modelling:

e Simultaneous approach: dynamic models with viscoelastic
structures of a single specific task

» Kinematic approach: kinematic models with rigid bodies (equivalent
mechanisms) of the passive motion
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Experimental data Model parameters A single optimization problem is solved and
Relative motion of Geometry, model parameters are identified on the given
bones in loaded stiffness, task.
conditions viscosity...

‘1‘ ‘1‘ Advantages

Optimization * All structures of the joint are involved (both
l passive and active)
Final model « Suitable to simulate the dynamic behaviour
of the joint

Disadvantages

» Computational demanding

e * The restraining function of joint structures
F is lost: model elements and parameters
BT\ B have a subtle relation with the anatomy

iy MEM

» Model results fit the experimental results of
the given task only

» Qutcomes of the models are difficult to

KB Shelburne, MG Pandy (1997). A musculoskeletal model of the knee for mterpret and the model itself is less useful to
evaluating ligament forces during isometric contraptions. JBiomech 30(2): 163-176. surgeons and to prosthesis designers
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Experimental data Model parameters A single optimization problem is solved and
Relative motion of model parameters are identified on the
bones in passive Geometry passive motion.
conditions
\L \1/ Advantages
Optimization » Good accuracy in passive motion simulation
»L * Function of the structures that influence the
Einal model passive motion is correctly replicated
» Computationally simple
N —— Disadvantages
B: B: )ﬁ B. ) Bs .

_ O * Only a few structures of the joint are modelled
[ E_‘-‘__ | » Model results fit the experimental passive
motion only
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- Propose a new procedure with the final object

To consider all the anatomical structures of a joint (both the passive and the
active ones) making their role evident in the kinematic and kinetostatic-dynamic
behaviour of the joint itself.

Kinematic approach Sequential approach

N .B:\&/ B Bs ( W\
+ ) | / \u
i

A NEW PROCEDURE HAS TO BE DEVISED
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C\VULCIN TIAL APPROACH
A sequence of more and more_sophlstlcat_ed, Experimental Model parameters
l.e. generalized, models. The final model is data
obtained by means of three intermediate steps. 1 2 3

Rules: Optimization 1 |(—

» Once a parameter has been identified at a ‘l’
particular step, it is not changed at the Model 1
following steps \L
« Parameters identified at each step must be > Optimization 2 |
chosen so that they do not alter the results
obtained at the previous steps ‘l‘
Model 2
Advantages: Model 1
» The two rules guarantee that the results \L
obtained at e_ach step dq not change those s Optimization 3 e
already obtained at previous steps »1/
At each step it is therefore possible to identify
the role of the added structures Model 3
Model 2
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Step 1 — Passive motion model

Features:

* It refers to the joint’s main anatomical structures which are involved during the motion of the joint under
virtually unloaded conditions

» Three dimensional rigid body mechanism

» Geometric parameters identified by an optimization process based on in vitro/vivo measurements
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Step 1 - Passive motion model (M1) Step 2 — Stiffness model (M2)
Features:

» The model comprises the M1 model with the addition of the remaining passive structures

* All the passive structures involved (both those of the M1 model and those added at this step) are now
considered as elastic or viscoelastic structures

* The model’'s geometric and structural parameters are identified by an optimization procedure based on in
Vvivo measurements (static loads)

» The identification procedure is performed by satisfying the rules of the sequential approach
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SEQUENTIAL APPROACH

—_

Step 1 — Passive motion model (M1) Step 2 — Stiffness model (M2) Step 3 — Dynamic model (M3)

Features:

* The M3 model comprises the M2 model with the addition of all the active joint structures, i.e. mainly all
muscles involved in the motion of the joint

* Dynamic loads and tasks are considered (inertia)

» An optimization procedure makes it possible to identify the remaining geometrical and structural
parameters of the model
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Step 1 — Passive motion model (M1) Step 2 — Stiffness model (M2) Step 3 — Dynamic model (M3)

Each model has its own advantages and disadvantages:

* M1 is simple and computationally not too much expensive but provides a
limited amount of information

* M3 is computationally demanding but provides all the information related to
the behaviour of the joint.
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KNEE EQUIVALENT MECHANISMS

femur

The mechanisms proposed in the literature replicate only the relative motion of the
femur-tibia articulation

It is not possible to use these mechanisms for studying loading conditions

. 2

A complete knee mechanism is defined that comprises the patella too
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» Isometric fibres of ACL, PCL, MCL

» Spherical approximation of the condyles
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>  5-5 fully parallel mechanism
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 Cylindrical approximation of the trochlea and of the anterior femur condyles

 Isometric fibre of the patellar ligament

« SPS group for the modelling of the quadriceps
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APPLICATION TO THE KNEE (MODEL M1)
= TF model
P AT = Knee model
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PROPOSED MODEL

| Cz | * two sub-chain partially decoupled
Spj%' Dy ~ ot * closure equations:

. ya IA; — RiyB; =Pyl = Li, (i=1.....5)

== @ e\ K S Rp Qo+ Py =2 +
g E e |Rip (RppDy +Ppp) + Piy = Cif| = L

| | J— N e geometrical parameters:
Foa © 08T = 35 for sub-chain FT
| | = 16 for sub-chain FR
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*
Xji
: : 0 f :
Experimental Geometrical | 9 Pa_ra_met_er q Final
data parameters ~> optimization |- geometry
gk
Parameter optimization:
* bounded optimization
9 \
Tj; — T L) * n control points, n,
f — E E j if closure succeed motlon Components
j=11=1 . discontinuous objective
f=X otherwise function
| » genetic algorithms +
guasi-Newton
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RESULTS

. Original

. Optimized

Small differences between the Consistency of the geometric and
original and the optimized models :> kinematic hypotheses of the model
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» Relative position Femur-Tibia in passive flexion
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............... Experlmental data

Proposed model
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» Relative orientation Femur-Tibia in passive flexion

By Rotation (ab/adduction)
2 T T

_ | | | |
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Ty Rotation (intra/extra)

20 T T
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Knee Flexion Oty (degrees)

--------------- Experimental data — Proposed model
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» Relative position Femur-Patella in passive flexion
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--------------- Experimental data — Proposed model
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» Relative orientation Femur-Patella in passive flexion
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Proposed model
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Synthesis of new surfaces for knee prostheses:

Ottoboni, Parenti-Castelli, and Leardini, AIMETA 2005
Ottoboni, Sancisi, Parenti-Castelli, Leardini, -MECH submitted, 2009
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New Design of Prostheses for Human knee Joint
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Anterior view Posterior view
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m Patents:

Parenti Castelli Vincenzo

Title: Orthopaedic Device and procedure to Realize such a device
International application number PCT/IB2006/003787

US application number: 12/159,747

Atty Docket. No. BUG3-43935

LA FILING Date: 12/28/2006

Priority date: 12/28/2005

Parenti Castelli Vincenzo, Nicola Sancisi, Fabio Catani, Alberto Leardini,
“Dispositivo ortopedico perfezionato”

Riferimenti Bugnion: Ns Rif. 61.U2164.12.IT.27

61.13257.12.1T.19 TP/gl

Vs RIif. Bolognha, 13 maggio 2009

DOMANDA DI BREVETTO N. BO2009A000291
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APPLICATION TO THE ANKLE (MODEL M1)
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APPLIC

Spherical approximation of the lateral malleolus
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APPLICATION TO THE ANKLE (MODEL M1)

Spherical approximation of the medial malleolus
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APPLICATION TO THE ANKLE (MODEL M1)

Spherical approximation of internal region of the inferior surface of the distal tibia
articulates with the talus surface
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APPLICATION TO THE ANKLE (MODEL M1)

Distance between the centers of the spherical pairs is constant
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APPLICATION TO THE ANKLE (MODEL M1)

Isometric fibers of ligaments

Calcaneofibular ligament

Tibiocalcaneal ligament
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APPLICATION TO THE ANKLE (MODEL M1)

1-DoF parallel mechanism

* insertion points of two isometric
fibers of the two ligaments
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APPLICATION TO THE ANKLE (MODEL M1)

1-DoF parallel mechanism

» centers of the spherical surfaces
of the three sphere-to-sphere
contact points
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APPLICATION TO THE ANKLE (MODEL M1)

1-DoF parallel mechanism
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5-5 fully parallel mechanism
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APPLICATION TO THE ANKLE (MODEL M1)

INSERIRE
IMMAGINI
RICCARDO
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» Relative position Tibia-Talus in passive flexion

X, [mm]
:
:.
l

z, [mm]
T
H
X
s
4
4
[

-20 -15 -10 -5 0 5 10 15 20 25

Dorsi(+)/Plantar(-) flexion (v), [°]

————— Experimental data —— Proposed model
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RESULTS

O

» Relative orientation Tibia-Talus in passive flexion

Pronation(+)/Supination(-) (i), [°]
=

4 e i

_5 —

el 1 1 L 1 1 1 L 1 L
20 15 10 5 0 5 10 15 20 25

Dorsi(+)/Plantar(-) flexion (y), [°]

Intra(+)/Extra(-) rotation («), [°]

AR
1 | 1 | 1 | 1 | 1

i"20 -15 -10 -5 0 5 10
Dorsi(+)/Plantar(-) flexion (y), [°]

————— Experimental data —— Proposed model



- investigation of the fibula role
- preplanning of surgical intervention and new
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The TFC complex is composed by:
. tibia

. fibula

. talus

- calcaneus

Importance of modelling the TFC complex:

- first step for future developments of complete models
of the entire human lower limb

- a better knowledge of the ankle complex

prostheses design
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THE EQUIVALENT MECHANISM
Assumptions

1. Close correspondence between articulation anatomical structures and
mechanism elements

* bones <« » < rigid bodies
* igament isometric fibres <« » e rigid rods
* igament-to-bone insertions < » « spherical pairs

* bone contact points < » « higher pairs which have 5-DoFs
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THE PROPOSED EQUIVALENT MECHANISM

Tibia
segment

Fibula

Fibula
segment

Calcaneus

o
1-DoF mechanism segment
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THE PROPOSED EQUIVALENT MECHANISM

The talocrural joint
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THE PROPOSED EQUIVALENT MECHANISM

The talocrural joint

Spherical approximation of the lateral malleolus
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THE PROPOSED EQUIVALENT MECHANISM

The talocrural joint

Spherical approximation of the medial malleolus
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THE PROPOSED EQUIVALENT MECHANISM

The talocrural joint

AN

Spherical approximation of internal region of the inferior surface of the distal
tibia articulate with the talus surface
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THE PROPOSED EQUIVALENT MECHANISM
The talocrural joint
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THE PROPOSED EQUIVALENT MECHANISM

The proximal end of tibia and fibula

Plane-to-sphere approximation of the contact between tibia and fibula
surfaces at the proximal end
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THE PROPOSED EQUIVALENT MECHANISM

Isometric fibres of ligaments

Calcaneofibular ligament Tibiocalcaneal ligament
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THE PROPOSED EQUIVALENT MECHANISM

Isometric fibres of ligaments

Ant-Tibiotalar ligament Post-Tibiotalar ligament
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THE PROPOSED EQUIVALENT MECHANISM

Isometric fibres of ligaments

Ant-Talofibular ligament Post-Talofibular ligament
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THE PROPOSED EQUIVALENT MECHANISM

Isometric fibres of ligaments

Interosseus membrane between
tibia and fibula
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THE PROPOSED EQUIVALENT MECHANISM

Tibia
segment

Fibula

Fibula
segment

Calcaneus

o
1-DoF mechanism segment
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THE PROPOSED EQUIVALENT MECHANISM

Tibia segment

Fibula

Calcaneus

Talocalcaneal segment

1-DoF mechanism
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KINEMATIC MODEL

The 1-DoF equivalent mechanism » Closure equations:

Fibula Tibia segment

segment

1. Rigid rods:

”Ai_RtC Bi_ptc”Z: Li2 (I 11'
ID,—RyC—pglP=L2  (i=6,..9)

\ @ -
2 — 2
S>\- b Il Ajp = Ry C1o = P ll*= Lyg
Cio
Co Ls  Co 2. Plane-to-sphere contact higher pair:
® C/D : D g pair:
Nn(C-H)=0
with
n=Ry;n

t —
T Ny A Bs a H=Ry H+py
De DS Dg 83 B &
o5 S»’ g 1 :
! 2 e 78 geometrical parameters

Talocalcaneal segment
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SYNTHESIS OF THE EQUIVALENT MECHANISM

Synthesis procedure:

*
Xji
Experimental Geometrical | o Parameter qf Final
—> > L >
data parameters ~> optimization |- geometry
........ o

Parameter optimization:

bounded optimization

2
()i — .,)
jZ, : : : C
f E E if closure succeed discontinuous objective
+ | function

7=11=1

f _ X otherwise genetic algorithms +
) | quasi-Newton
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CASE STUDY

1. Geometry of the bones:
- axial computer tomography (TAC)

2. Geometry of the ligaments:
- points digitized with surgical navigation system

- literature

Fibula Tibia

3. Relative position of the talocalcaneal segment
and of the fibula segment with respect to the T
tibia segment:
- recording with surgical navigation system

4. Parameter optimization:
Objective Function includes only the results of _
the talocalcaneus and tibia kinematic analysis; f:lﬁ‘h; Talus
the point C, (the centre of the sphere that VL) tﬁ,’
approximates the contact surface of the fibula in
the lateral malleolus) is constrained to move
inside an anatomical volume

Calcaneus
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Orentation Position
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CONCLUSIONS

A sequential procedure for the modelling of human diarthrodial joints was
presented.

The procedure relies upon some basic assumptions (rules) and provides,
In three sequential steps, three different joint models (M1, M2 and M3
respectively) with increasing complexity that incorporate both more and
more complex anatomical structures and different joint loading conditions.

It makes it possible:
* to preserve the restraining function of the joints’ anatomical structures

» to highlight the role that each individual joint structure plays in the joint

The results of the M1 model for the knee, the ankle and the lower leg are
reported, and M2 model for the knee, showing the efficiency of the
proposed procedure.
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| thank you for your kind attention



