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1. Cooperative Skimming	


April 20, 2010  

 Deepwater Horizon drilling 
rig explosion, Gulf of Mexico 

 104 m3 of crude oil released 
into the ocean 

Manual skimming operations at 
the surface removed ~3% of the oil 
– highly inefficient! 

Develop an efficient robotic 
skimming operation using 
Autonomous Surface Vehicles 

Goal	
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[Bhattacharya, Heidarsson, Kumar and Sukhatme, 2011] 
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Aerial Robots	



[Kushleyev, Mellinger and 
Kumar 2012] 
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2. Cooperative Manipulation	
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3. Cooperative Towing	
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Kinematics and Statics of Suspended Payloads	



[Möbius, 1837; Ball, 1900] 
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Kinematics and Statics of Suspended Payloads	



Phillips, J. (1990). Freedom in Machinery, Vol. 1. Cambridge, Cambridge 
University Press.	
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1.  Direct and inverse kinematics 	



2.  Reasoning about homotopy classes associated 
with cables and trajectories	



Today	
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Key Ideas 

Ø  Direct Kinematics 

Ø  Inverse Kinematics 

Ø  Stability Analysis  

Ø  Static Equilibrium 
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Actuated reel"

Base"

Cable"
Platform"

3-D Cable Towing System  Cable actuated parallel manipulator 
Similarity: Multiple cables are used to control the pose of the payload or platform. 
Differences: 

Cable lengths fixed	
   changing	
  

Positions  of robots or reels	
   changing	
   fixed	
  

Role of weight	
   important	
   less important 

workspace	
   transport distance	
   inside the frame	
  

Purpose	
   payload transport	
   manipulator	
  

fundamental	
   system of Multiple robots	
   parallel manipulator	
  

Similarity and Difference  

12 



Kinematics of 3-D Cable Towing Systems Aug.11&12, 2012 

3-D Towing with multiple robots 

Unit wrench of cable i with respect to 
the origin O of the reference frame: 

(1) 

Wrench caused by the weight of  
the payload: 

(2)         

Equilibrium equations: 

(3) 

Geometric constraints: 

(4) 

Static Equilibrium Condition 
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Direct Kinematics (DK): General case with three robots 
Given the positions of the robots, find the possible positions and orientations 
of the payload that satisfy Eqs.(3) and (4). 

Pi can be given as 

Coordinates of Pi  

(5) 

(6) 

(7) 

General Case with three robots 

14 

Substituting eqs. (5) and (6) into the equilibrium condition eq.(3):  
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DK: General case with three robots 
From eq.(7), one gets 

(8) 

(9)            

Geometric constraints                                         : 

15 
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DK: Cable Systems with Symmetric Geometry 

Three cables Four cables 

Five cables Four cables 



Kinematics of 3-D Cable Towing Systems Aug.11&12, 2012 

Pi  can be given as 

Planar four-bar linkage  

(10) 

(11)        

(12) 

DK: Equilibrium problem of planar four-bar linkage 

Equilibrium condition: 

(13)            

Geometric constraints              : 
(14)            

(15)            

8th degree 
polynomial in x1 
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DK: An example of four-bar linkage  
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DK: Solutions based on planar four-bar linkage 
____The case with three robots 

Four equilibrium configurations in plane 

Initial configuration 

Configuration1 (Stable) Configuration 2 (Stable) 

Configuration 3 (Unstable) Configuration 4 (Unstable) 

19 
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Initial configuration 

DK: Solutions based on planar four-bar linkage 
____The case with six robots 
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DK: Solutions based on planar four-bar linkage 
____The case with six robots 

21 

Configuration 7 (Unstable) 
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Inverse Kinematics (IK) 
 Given the desired position and orientation of the payload, find 
the positions of the robots that satisfy the equilibrium 
equations and the geometric constraints. 

where s1, s2, …, s12, t1, t2 are constants or functions of of  Ti (i=1,2,3).   

From geometric constraints: 

(17)             

(16) 

Assume cable tensions (Τi) are given. From equilibrium equations: 

Constants 

22 
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IK(…contd.) 

where coefficients (t17, t18, …, t24) are functions of  Ti (i=1,2,3).  

(18) 

Note equilibrium equations are linearly independent in (z1, y2, z2, x3, y3, z3),                                     

(19)     

Substituting  Eq.(18) into Eq.(17), we get three quadratic equations: 

23 
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IK: Analytic algorithm based on Dialytic elimination 

Suppressing x2, we get 
(20) 

(22) 

(23) 

(21) 

24 
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(25) 

(24) 

(27)  
From eqs.(21) and (26), we get 

(28) 

(26) 

8th degree 
polynomial in x2 

IK: Analytic algorithm based on Dialytic elimination 
(Salmon 1885, Roth 1993) 

Functions of x2  
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IK: Case study – equilateral triangle payload  

Table 3: Only 6 real solutions for an equilateral triangle payload with cr=0.8. 

Specify load distribution 

1. Normalized load (tension) 

Used parameters 

26 

Feasible tensions 

2. Tension constraints 
optimal load 
sharing 

Back to 
Slide 22 
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IK: Fixed load distribution ratio  

Six configurations for an equilateral triangle payload with cr=0.8. 
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IK: Effect of changing the load distribution ratio, cr 

The six sequences of configuration for an equilateral triangle payload as cr is varied. cr,min = 0.417. 
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IK: General payload  
Used parameters 

Six configurations for a general payload with cr=0.9. 
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IK: General payload:  Changing the load distribution ratio, cr 

The six sequences of configuration of a general payload (3-D, center of mass not at 
centroid of triangle of anchor points) 
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 IK: Tension workspace 
 Definition: The tension workspace can be defined as the sets of 
tensions at which at least one configuration can be found for a given 
position and orientation of the payload. 

31 

Back to 
Slide 17 
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 IK: Tension workspace 
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Conclusions 
(1) Direct Kinematics 
Ø Analytic algorithm based on resultant elimination for planar 4-bar linkage 
Ø Case studies with 3 to 6 cables 

(2) Inverse Kinematics 
Ø Analytic algorithm based on dialytic elimination (Up to 6 solutions for given tensions) 
Ø Case studies for different payloads, tensions, orientations 
Ø Tension workspace 

(3) Stability Analysis 
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Homotopy Classes of Trajectories���

Planning, optimal control 

initial 

final ? ? 

? 
? Exploration 

  Coordinated motion planning 
for towing/skimming	



  Finding geodesics (plans, 
controls) in complex spaces	



  Exploration	





35	



Homotopy and Homology	



	

Homotopy is easy to understand, but difficult to compute. 	



Homotopy 

⌧1 ⇠ ⌧2 τ1 can be continuously 
deformed into τ2 

Homology 

⌧1 ⇠ ⌧2 �1 [ ��2 = ⇥A

⌧2 ⌧ ⌧3 ⌧2 ⌧ ⌧3

=)

Homology groups can be computed (Hatcher, 2002)!  

=)
? 
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Homologous but not homotopic	



��

��

�� ��

��

��
A1 

A2 

�1 [ ��2 = ⇥A1 [ ⇥A2

	

Homotopic implies homologous, but 
converse not necessarily true! 	
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H-Signature	



Find a 1-form whose integral along a trajectory encodes 
information about the homology (homotopy) class	



H(�) =
Z

⌧
⇥

H(�1) = H(�2) 6= H(�3)

A homology (homotopy) 
class invariant for τ	
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For single path-connected obstacle in two dimensions, the H-
signature (homology class invariant) can by computed from the 
Cauchy Residue Theorem	



Example: One dimensional obstacles in three-dimensional space (linking number) 

0	



-2	



2	

1	



γ 

Example: point obstacles in two-dimensional space 

zc 

H(�) =
Z

⌧
⇥
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Homology classes and planning	


Two Key ideas 

 1 H-signature to identify the homology class of τ. 

2 Graph search to find trajectories 

O1 

O2 

O3 

O4 

O5 
wikipedia.org 
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Homology classes and planning	


Two Key ideas 

 1 H-signature to identify the homology class of τ. 

n1 

n2 

e

nstart Parent node 

Child node 

2 Graph search to find trajectories 

n1 in “closed” list (expanded)  
    – next node to expand is n2  .... 

 Find optimal paths with constraints on H 

g(nstartn2) = g(nstartn1) + cost(e)

Cost 

H(nstartn2) = H(nstartn1) + H(e)
H-signature 
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(zs , 0+0i) 

ζ1 start 

(z2 , H(e1)) 

(zg , H(e1)+H(e3)) 
e1 

e2 

e3 

e4 

(z1 , H(e2)) 

(zg , H(e2)+H(e4)) 

≠ 

zs zg 

z1 

z2 

ζ1 goal start 

e1 

e2 

e3 

e4 

G = (V, E)

GH = (VH , EH)
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Planning	
  in	
  two	
  dimensions	



Re	
  

Im	
  

ζ1	
  

ζ2	
  

ζ3	
  

τ1	
   τ2	
  

τ3	
  

Graph-search based planning with 
homotopy class constraints.	



Homotopy	
  class	
  explora1on	
  
in	
  a	
  large	
  environment	
  
(1000x1000	
  discre1zed)	
  

Op1mal	
  planning	
  with	
  
homotopy	
  class	
  constraints	
  

(visibility	
  constraint)	
  

 Construct a (vector) analytic function 
with singularities at “representative 
points” in the complex plane. 

 Leverage Cauchy Integral and Residue 
Theorems to design an additive homotopy 
class invariant. 

H(�) =
Z

⌧
F(z)dz

Unconstrained plans Suboptimal construction Optimal constrained plan 

ω(diff. 1-form) 
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Planning in three dimensions	



Ampere’s Law:	



Biot-Savart’s Law:	



B: Magnetic field vector	


µ0: Magnetic constant (can be chosen as 1)	



Skeletons of Simple Homotopy 
Inducing Obstacles are modeled as 

a current carrying conductors	



h-­‐signature	
  of	
  trajectory	
  τ:	
  

where,	
  
, 

ω(diff. 1-form) 

[Bhattacharya et al, RSS 2011] 
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Results in 3-D	



Explora5on	
  of	
  4	
  
homotopy	
  classes	
  in	
  
presence	
  of	
  2	
  SHIOs	
  

Explora5on	
  of	
  4	
  
homotopy	
  classes	
  

in	
  presence	
  of	
  4	
  SHIOs	
  

Planning	
  in	
  Space	
  Time	
  Planning	
  in	
  X-­‐Y-­‐Z	
  configura1on	
  space:	
  

Optimal control with space time constraints (Mellinger and Kumar, 2011) 



45	



Key idea	


	

Construct S, a (D-2)-dimensional homotopy equivalent of an 
obstacle	



	

Find a differential 1-form that, when integrated along a closed 
curve, gives its linking number with S.	


  Establish a surjective map between RD -S and RD -{0} and exploit the known 

formulae for closed but non-exact differential forms in RD -{0}.	



Linking Number in D-Dimensional Euclidean Spaces	



Definition D2 (Choosing a p and a g ).

We would like to construct a p : ED ⇥ S ⌅ ED with properties as described in Definition
D1. Let x ⇧ (ED � S) ⇤ ED be the coordinate variable describing points in (ED � S), and let
x⌅ ⇧ S ⇤ ED be the one describing points in S. We can borrow the vector structure of ED for
constructing p without effecting the topology. Thus we choose p(x,x⌅) = x�x⌅. It is easy to verify
that this function satisfies the conditions of Definition D1.

Similar to before, we let s ⇧ (ED � {0}) ⇤ ED be the natural coordinate variable describing
points in the space (ED�{0}). A well-known result [1, 3] is that a differential closed but non-exact
(D � 1)-form in (RD � {0}) (i.e., a nontrivial element of ZD�1

dR (RD � {0})) is,

�(s) =
D�

k=1

Gk(s) (�1)k+1 ds1 ⌃ ds2 ⌃ · · · ⌃ dsk�1 ⌃ dsk+1 ⌃ · · · ⌃ dsD (7)

where
Gk(s) =

1

AD�1

sk

(s21 + s22 + · · ·+ s2D)
D/2

(8)

where, s = [s1, s2, · · · , sD]T ⇧ (RD � {0}), and AD�1 = D�
D
2

�(D
2 +1)

is the surface area of the
(D � 1)-sphere.

Thus, by virtue of De Rham’s theorem, a nontrivial g ⇧ ZD�1(ED � {0};R) is given by

g(⇥) =

⇥

s⇧⇥
�(s) (9)

Proposition P6. The homology class of a cycle ⌅ ⇧ ZN�1(ED � S) is uniquely determined by the
value of

⇤(⌅) =

⇥

x⇧⇤

⇥

x�⇧S
1
�(x� x⌅)

where, by �(x � x⌅) we imply the expression that is obtained by replacing each si in Equation (7)
with xi � x⌅

i (which essentially is the pullback p⇥(�)(x,x⌅)).
That is, [⌅1] = [⌅2] (i.e. they are homologous) if and only if ⇤(⌅1) = ⇤(⌅1), for any ⌅1,⌅2 ⇧
ZN�1(ED � S).

Proof. By our choice of p and g from Definition D2, and from Proposition P5 we have,

⇤(⌅) =

⇥

s⇧p#(⇤⇤S
1
)
�(s)

Via the pullback of p we get,

⇤(⌅) =

⇥

(x,x�)⇧⇤⇤S
1
p⇥(�)(x,x⌅)

=

⇥

x⇧⇤

⇥

x�⇧S
1
p⇥(�)(x,x⌅) [using Fubini’s theorem]

=

⇥

x⇧⇤

⇥

x�⇧S
1
�(x� x⌅) [by our notational convention for the pullback]

Hence the proof follows from Proposition P5.

7

d� =
1

x2 + y2
(�ydx + xdy)

Example (D=2)	
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Multiple Obstacles	



	

Find a differential 1-form that, when integrated along a closed 
curve, gives its linking number with S.	


  Establish a surjective map between RD -S and RD -{0} and exploit the known 

formulae for closed but non-exact differential forms in RD -{0}.	


  Decompose S ((D-2)-dimensional skeleton) into M connected components:	



Linking Number in Punctured Euclidean Spaces	



[Bhattacharya, Lipsky, Ghrist and Kumar, 2012 (submitted)] 
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Problem 1	


Constraints	



	

Trajectory belonging to a specified homology class	



H(q(1)) = Hdes

Generate optimal trajectory with homology class 
constraints  

min
q(t)

Z 1

0
L

⇣
q, q̇, . . . , q(r)

⌘
dt

Optimization	



	

Minimize cost functional ���

Easy to compute	

Non convex 
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Problem 2	


Constraints	



	

Trajectory belonging to a specified homotopy class	



Generate optimal trajectory with homotopy class 
constraints  

min
q(t)

Z 1

0
L

⇣
q, q̇, . . . , q(r)

⌘
dt

Optimization	



	

Minimize cost functional ���

Assumptions	



	

1. Polygonal Obstacles	


	

2. Quadratic Cost   	



Harder to 
compute	



[Kim, Bhattacharya, Sreenath, 
Kumar, ARK 2012]	
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Conclusion	

	

Geometry, kinematics and statics of cable-driven 
systems introduce challenges and opportunities	



  Homotopy classes (and homology classes)	



  Instantaneous kinematics 	



  Direct and Inverse kinematics	



  Dynamics and control	



  Scaling up to large numbers 	




