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~|. Cooperative Skimming

April 20, 2010
Deepwater Horizon drilling
rig explosion, Gulf of Mexico

104 m3 of crude oil released
into the ocean

Manual skimming operations at
the surface removed ~3% of the oll
— highly inefficient!

Goal

Develop an efficient robotic
skimming operation using
Autonomous Surface Venhicles
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Aerial Robots
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Today

|. Direct and inverse kinematics

2. Reasoning about homotopy classes associated
with cables and trajectories
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Key Ideas

» Static Equilibrium

» Direct Kinematics
> |Inverse Kinematics
» Stability Analysis
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Similarity and Difference

Actuated reel

- Platform

/

3-D Cable Towing System Cable actuated parallel manipulator
Similarity: Multiple cables are used to control the pose of the payload or platform.
Differences:

Base

changing fixed
important less important
transport distance inside the frame
payload transport manipulator
system of Multiple robots parallel manipulator
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Static Equilibrium Condition

Unit wrench of cable i with respect to
the origin O of the reference frame:

o l q; — Pi
“'_l,- [piqu_]. (1)
Wrench caused by the weight of
the payload:
. €3
G:—mg[rer- (2)

Equilibrium equations:
T,

Ts

Wi wa .ow,] | L [ +G=0. (3)

T, i

3-D Towing with multiple robots

Geometric constraints:
|qi —pil| = 1. (4)
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Direct Kinematics (DK): General case with three robof$s™
Given the positions of the robots, find the possible positions and orientations
of the payload that satisfy Egs.(3) and (4).

P; can be given as

p.=q;,+q,p, (i=123) (5)
v

q,p; = [Iixi’ lz’yi) lz'Zi]T

!

X, =sino,cos B, y =sina,sinf,” z, =cosq,

XX +y+z =1 (i=1,2,3) (6)
Substituting egs. (5) and (6) into the equilibrium condition eq.(3): General Case with three robots

(T, + 5T, +xT, =0,

W+ 0T, + 3,7, =0,

T, +z, T, + 2,1, =—mg,

(ZuV1 =Y Z) Ty + (200 = Y 20) T (2583 = ¥,323) T, —mgy, = 0,

(X121 = 20 X)Ty (X025 = Z2,5%) Ty + (X525 — Z,5%) Ty, —mgx, =0,

| (VX =X V) Ty (V0% = X0 15)To (V3% = X,33) T3 = 0. (7) f
Coordinates of P,
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DK: General case with three robots

From eq.(7), one gets
(al 5 [(Z0 1 = Y2505 = 92%3) = (2202 = V220 Ys = 01%5) + (2305 = V3 Z)(X0 0, = 1ixy)]
+al (Vo +Ly) + 0, (Vo =V +hyy =0y + (Vg3 = Voo + 55 =53]}
[0 (0,25 = 132,) + (62, = X,23) + 2, (%, 05 = X%3,)] = 0,
) alpz[(quzl —Z,X )X,y — V,X;) — (xqzz2 = Z,%, )Xy, —yx,) + (xq3z3 - zq3x3)(x1y2 - ,x,)] (8)
+{al ,(x, +1x)+b[] ,(x,, —x, +Lx, =l x)+c(x;-x, +Lx-1,x,)]}
(X (1225 = ¥32,) + 11 (%32, = X%,23) + 2 (X%, 93 - %, 9,)] = 0,

\(yq]x] - quyl )(x2y3 - y2x3) - (yq2‘x2 - xqzyz)(x1y3 - y1x3) + (yq3x3 - xq3y3 )(xlyz - ylxz) = 0.

Geometric constraints (BB =1, BB =1,, BB =1,):
([(x, —x)% +(V, =Y IV +(z2, —2,,)z ] =L L(xx, + .y, +2,2,) + 1y,
+hL[(x,, —x, )X, + (Vo =Y, )V, +(2,, —2,)2,]1=0,
LIx,, =X;3)% + (Vo = V3) Vs (2,5 = 2,5)2, | = LE(6x + v, v5 + 2,25) +u,
+[(x,5 =X, + (V3= Y,V +(2,5—2,,)2,] =0, (9)
LI(x, —x )%+ (Y, —Y)V +(2, —2,5)z | = LL(xx5 + v, y; +2,25) +uy

+I3[(xq3 _qu)x3 + (yq3 _yql)y3 + (Zq3 _qu)Z3] = 0.
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DK: cable Systems with Symmetric Geometry[~™

Five cables Four cables
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DK: Equilibrium problem of planar four-bar linkage

P; can be given as

p. =q +l[cosa,sina]=q +1[x,z] (i=12) (10) © Lol
0,
0,(0)
x>+z2=1 (i=1,2) (11) /
1 1 | 12
Equilibrium condition:
(T, +xT,=0, L, ~p
T, +z,T,+mg =0, (12) Planar four-bar linkage
ol 2Ty +mgll (L, — 1)x + LLx, + ) ]=0.

[, —1,)xx, _lzlcx22 =l x, )z, =[], (I, _ld)xlz —Llxx, +1,(l, -1.)x ]z, =0 (13)

Geometric constraints PP, =/,

1l,z,z, +1Lxx, +1,(I,x, —L,x,)+1, =0 -

8 7 6 5 4 3 2
ax, +a,x; +a.x; +ax; +a,x, +a,x; +a,x; +a,x, +a, =0 (15)

(14)

Aug.11&12, 2012 Kinematics of 3-D Cable Towing Systems 17



DK: An example of four-bar linkage

Table 1 The used parameters of the planar 4-bar linkage.

lo(m)

l1(m)

lo(m)

lg(m)

[.(m)

mg(N)

4

-

J

-

J

22

1.1

10

Table 2 The solutions of the equilibrium problem
of the planar 4-bar linkage.

No. T 9 1 29
1 0.826 | 0.127 | 0.564 | 0.992
2 0.826 | 0.127 | -0.564 | -0.992
3 0.777 | -0.332 | 0.630 | 0.943
4 0.777 | -0.332 | - 0.630 | -0.943
5 0.620 | -0.620 | 0.785 | 0.785
6 0.620 | -0.620 | -0.785 | -0.785
7 -0.127 | -0.826 | 0.992 | 0.564
8 -0.127 | -0.826 | -0.992 | -0.564
9 0.332 | -0.777 | 0943 | 0.630
10 0.332 | -0.777 | -0.943 | -0.630
11 0.180 | -0.180 | 0.984 | 0.984
12 0.180 | -0.180 | -0.984 | -0.984
13 -1 NA NA NA
14 -1 NA NA NA
15 | 2.116 0 NA
16 1 2.116 0 NA

Aug.11&12, 2012

Kinematics of 3-D Cable Towing Systems

The 12 equilibrium configurations
of the planar 4-bar linkage.

N
21ST CENTURY

18



e

21ST CENTURY
KINEMATICS
2

DK: Solutions based on planar four-bar linkage
The case with three robots

-1.8] -1.87

-3.87 -3.87

-5.8- -5.8

Configuration1 (Stable) Configuration 2 (Stable)

2.9
] 1.9
- 0.9
0.1 _00%0 \
BE
-1.8 ]
Initial configuration 2
-3.8 37
-4—;
58 -5-;
Configuration 3 (Unstable) Configuration 4 (Unstable)

Four equilibrium configurations in plane Q,FPQ

Aug.11&12, 2012 Kinematics of 3-D Cable Towing Systems 19



DK: Solutions based on planar four-bar linkage

The case with six robots

[=12m, I =4m, I =1m.

Initial configuration

-9.0

-11.51

(a) Configuration 1 (Stable)

-9.0-

-11.54

(c) Configuration 3 (Unstable)

N
21ST CENTURY

-6.0 NS
-8.5 ‘,/ \

-11.0~

(b) Configuration 2 (Unstable)
6

[’z’f ﬁw T

-2 \ py
Qe Z?
Iy I‘. ‘*—Jq_‘l__‘_w___éf-ﬂ;"’é‘,
s\ s
EAY S s
1\ ; Y
-4 OE K\:‘. , .: //‘/’
R I W
5 '/
90] A A
A ‘\,}/':’
-11.5-

(d) Configuration 4 (Unstable)

Four equilibrium configurations in the plane )1 P Py()y.

Aug.11&12, 2012

Kinematics of 3-D Cable Towing Systems
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DK: Solutions based on planar four-bar linkage

The case with six robots

6 6
A —_—
T — e —
2 g\ g T T 7
A %QL 2 1 L )‘,v" 2 A
T SR Y e
v\ : ~urifiy 7 A e /
LS9\ \ ; 1.0 \ J L /
\ A /j \ ) /
\ / \ \ 4
4.0 \ \ 4 3.5 \\ / //
\\ \ / N\ \ //
65 \ 6.0 N /i
\\ N\
9.0 \) 83 f\ < 4
W\ \\ A
-11.5 -11.01
(a) Configuration 5(Stable) (b) Configuration 6 (Stable)

6

6
T —— 4 e ——
P B R gl 7
A [ G /]
e gy 4 e . - f S
:\‘\ Ml ' ) L ’

s

-
.
\
\
N\

.:.oE \_:{‘\ \\ / 2.0 \\ // , /
-4.5° AN\ I 4.5 / / /
] RN \ / \ / /
.7‘0: \ .\ \\ : -7.0 \ / /
5 Ay \
9.5 -9.5 ' \
.1:,0; -12.0 @

(¢) Configuration 7 (Unstable)  (d) Configuration 8 (Unstable)

Four equilibrium configurations in the plane Q7 P7 PsQs

-11.0

wans

1
o
T

1

-8.5

| T T R I T

Configuration 7 (Unstable)
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Inverse Kinematics (1K)

Given the desired position and orientation of the payload, find
the positions of the robots that satisfy the equilibrium
equations and the geometric constraints.

Assume cable tensions (T;) are given. From equilibrium equations:

/

-

S\ ¥ F8,X, +8,x;, =0,

T80, = Constants (16)

§12) + 8,2, '@53 =0, \
=SV T 8520 —89), 832, =S, ¥ +8,2 =@

SeXp —842) ¥ 89Xy — 8,2, + 3 ~S810%43

| 7S5 Xy S, V) = SgXy + 878, =8 X +80)5 = 0,
where s, s,, ..., S;,, L, t, @are constants or functions of of T, (i=1,2,3).
From geometric constraints:

L/xl.2+yl.2+zl.2=ll.2 (i=12,3)

X S Xy T Xpio Vi = Vi =V pn 21 S 247 2

(17)

Aug.11&12, 2012 Kinematics of 3-D Cable Towing Systems 22



IK(...contd.)

Note equilibrium equations are linearly independent in (z,, y,, z,, X3, V3 Z3),

(21 = ti721 + t18Y1 + t1922 + t20,
Y2 = —(taz1 + tsy1 + tex2)/to,

{ T3 = —(81371 -+ 825[)2)/83,

Yz = t1171 + t12y1 + t1372,

| 22 = 12171 + l22y1 + l23%2 + T24.

(18)

where coefficients (t,-, t,q, ..., t,,) are functions of T, (i=1,2,3).

Substituting Eq.(18) into Eq.(17), we get three quadratic equations:

ralxlz +b1y12 + Clxzz +d\ Xy, ey x, + [i%x+gx +hy +ix,+ j =0,

2 2 2 : .
1 4 X +bzy1 +CX, +d2x1y1 +e,) X, +f2x2x1 + &,X +h2)/1 +i,x, + J, =0, (19)

2 2 2 . .
a,x; +b,y; +cx5 +dyx y ey x, + [10,x + gx, + gy +ix, + j; = 0.

Aug.11&12, 2012 Kinematics of 3-D Cable Towing Systems 23



IK: Analytic algorithm based on Dialytic elimination

Suppressing x,, we get

ax1+by1+dx1y1+kxl+uyl+v =0 (i=1,2,3) (20)
\
x1‘=/X/T,yll=Y/T k, = fx+\gl:l h,v.=cx +ix, + j
X +bY*+dXY+kXT+uT’=F =0 (i=1,2,3) (21)
F, X+Fl§ F.T=0 (i=1,23) (22)
| AN
Fa = Fr = Fr =5
JX =0 (23)

J=|F, F, F,|. X =[X,Y,TT
Fy Fy Fy

Aug.11&12, 2012 Kinematics of 3-D Cable Towing Systems
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IK: Analytic algorithm based on Dialytic elimination
(Salmon 1885, Roth 1993)

JX =0 (24)

7| =0 (25)
Functions of x

4. a@ﬁﬁz@r\x@y\

<£-BX2+2DXY+FXT+3@’ +2

2 =0, (26)

ﬂ = CX? + 2EXT + FXY + HY* + 2I¥T+ 3{]" = 0.

T
From egs.(21) and (26), we get
MX, =0 (27)
M=6x6 mﬁ‘ =X, Y?, XY, XT,YT,T*|"

Aug.11&12, 2012 Kinematics of 3-D Cable Towing Systems 25
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. .
IK: Case study — equilateral triangle payload ySS
Specify load distribution T
3
1. Normalized load (tension) 2. Tension constraints _
) 3 optimal load
=T /T, -
C,; i/ 'imax Z T > mg sﬁarlng
i=1

Used parameters
P, =[0,0,0F, p, =[L 0,07, p, =[0.5./3/2, 0T

F=[05.43/6.017.r=[L L 1F x | Back to
mg=25N, A, =20N,l,=1.5m(@i=1,2,3) T, F Slide 22

$=25, =15, y=-5° Feasible tensions

Table 3: Only 6 real solutions for an equilateral triangle payload with ¢,=0.8.

No.  xg Yq1 g1 Xq2 Yq2 2q2 Xg3 Vg3 243

I -0.430  -0.347  1.424 1.045 1.447 1.996  2.385 1.900 1.924
2 1.907  0.646 1.399 0277  0.052 1.466 0816 2302 2479
3 -0.644 0743  2.021 2.697 -0.091  0.849 0946 2348 2473
4 -0.072 1445  2.247 2.105 1.532 1.801 0967  0.024 1.296
S
6

1.351 1.526 1.968  0.946 1.395 1.992  0.703  0.079 1.384
0.359 1.632 2244 2570  -0271 0.787  0.071 1.638  2.312

Aug.11&12, 2012 Kinematics of 3-D Cable Towing Systems 26
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IK: Fixed load distribution ratio

A (m).‘ 4 (m)_

Z(m)._

2" e 2 27

17 1~ 1
?
- Y(m) i
T ] T
~r ~— t-.p--ﬁ" -——1 2 "-.‘l\—.;_‘\____--—r“‘_.] 2 '--.\r‘__'_::‘ o
o B S ! - >-—"T'~-.,__ _741 - T
0 e 0 — 0
1 T X (m) 1 - X(m)
2
(a) Configuration 1 (Stable) (b) Configuration 2 (Unstable) (c) Configuration 3 (Stable)
Z(m). Z(m)/ Z(m)

" ’ m
Y (m) --}-r( !
— i
I g T
0 NT\ 0 = T X(m) 0 rﬁ\"‘"'w--a-v. X (m)
1 T X(m) 1 o : -
> 2 2

(d) Configuration 4 (Unstable) (e) Configuration 5 (Unstable) (f) Configuration 6 (Stable)

Six configurations for an equilateral triangle payload with ¢,=0.8.
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IK: Effect of changing the load distribution ratio, c,

2.81

1.84

J—
-
T

5 . 0.8
\"""r Y s
0 (;? 15 T 0.5 e
2.5 1.15

(b) Sequence 2

""'m,..m

2.25] ’
. /
= [0.6 5’1] 2251 ¢, € [0 675,1
1.75 L7s
L
1.25 ol s
'(.-v""
07T 095 075 ™™
-0.0506 T, 0.45), v,
1.6 Toos e

(d) Sequence 4 (e) Sequence 3

(f) Sequence 6

The six sequences of configuration for an equilateral triangle payload as c, is varied. ¢

r,min

Aug.11&12, 2012 Kinematics of 3-D Cable Towing Systems
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IK: General payload

Used parameters

No. Lql Yq1 Zq1 Lq2 Yg2 Zq2 Lq3 Yq3 “q3
N o ~ T =~ T =~ T
| [-0.024 | 1473 | 2.621 | 2.385 | 1.453 | 1790 | 0.588 | 0.071 | 1979 | p =[0,0,0]", p, =[1,0,0]", p, =[0.8,0.7, 0]
2 | -0.590 | -0.319 | 1.845 | 0.650 | 1.464 | 2.186 | 2.531 | 1.405 | 2.214 | .
=[0.7,0.2,-0.3],r=[1, 1, 11"
3| 1.783 | 0.527 | 1.738 | 0.030 | 0.085 | 1.630 | 1.293 | 1.977 | 2.781
4 | 1.469 | 1.294 | 2.196 | 1.039 | 1.656 | 2.195 | 0.646 | 0.028 | 1.944
mg =100N =60N =70N = 80N
5 | -0.111 | 1.428 | 2.618 | 2.548 | -0.166 | 0.937 | 0.510 | 1.522 | 2.728 g ’)Hmax i Azmax ’%max >
6 |-0.456 | 1.159 | 2.560 | 2.489 | -0.244 | 0911 | 0.821 | 1.791 | 2794 | [, =1.5m(i=1,2,3), ¢ =25, 6 =15", ¢ =-5

Ii 6/._, ————
@3(—__ 60,4 9

0.9 1.9 ' 1.3 23

(a) Configuration | (Stable) (b) Configuration 2 (Stable) (c) Configuration 3 (Stable)

1.9 1.9
1.4
09K095. ... 573/ R —— j}/ I,
0.350: 1.35 08 1.8 0.5 s .
(d) Configuration 4 (Unstable) (¢) Configuration 5 (Stable) (f) Configuration 6 (Stable)

Six configurations for a general payload with ¢,=0.9.
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IK: General payload:

2\ |

1aeglosiAlo] I
\

1"

1"

2.4
1.9

1.4+

0 e

i o8 6 0.4 700 05 10
0.2 0.8 c,’é‘[o.532,1.0] 1.4 24 1.0 1.5

(a) Sequence 1 (c) Sequence 3

2.4
1.91
1.4
oqégam g _Ogﬁ@'*ﬁ—ﬁﬁ_ﬁ
0.3505%.85 135 0.2 1.2
(d) Sequence 4 (e) Sequence 5 (f) Sequence 6

The six sequences of configuration of a general payload (3-D, center of mass not at
centroid of triangle of anchor points)
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IK: Tension workspace

Definition: The tension workspace can be defined as the sets of
tensions at which at least one configuration can be found for a given
position and orientation of the payload.

L) Back to
258 Slide 17

i

i
!

!

/*]"54

T.(N) 25

(a) View 1 (b) View 2

The tension workspace with an equilateral triangle payload and ¢ = 25°,6 = 15° and » = —5°. The weight
of the payload is mg = 25N. The payload capacities of three robots are T}, = 20N (i = 1,2, 3).
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IK: Tension workspace

T:(N)

Ts(N)

(a) View 1

T:(N)
B

- - -

[

-’
A e ——
. -

(b) View 2

N
21ST CENTURY

T:(N)

The tension workspace with a general payload and ¢ = 25°,8 = 15° and ¢» = —5°. The weight of the payload is mg = 100N.

The payload capacities of three robots are respectively T',0.- = 60N, 19,0 = TON and T3,,,,. = S8ON.

Aug.11&12, 2012

Kinematics of 3-D Cable Towing Systems
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Conclusions

(1) Direct Kinematics
» Analytic algorithm based on resultant elimination for planar 4-bar linkage

» Case studies with 3 to 6 cables

(2) Inverse Kinematics

»Analytic algorithm based on dialytic elimination (Up to 6 solutions for given tensions)
» Case studies for different payloads, tensions, orientations

» Tension workspace

(3) Stability Analysis

Jianq, Q., and Kumar, V., 2012, “Determination and Stabilli\’%/ Analysis of
Equilibrium Configurations of payloads Suspended from Multiple Aerial
Robots”, ASME Journal of Mechanisms and Robotics, Vol.4, No.2.

Jiang, Q., and Kumar, V., 2010, “The Inverse Kinematics of 3-D Towing”,
Proceedings of the 12th International Symposium: Advances in Robot
Kinematics, June 27 — July 1, Piran-Portoroz, Slovenia.

Jiang, Q., and Kumar, V., “The Inverse Kinematics of Cooperative
'Igragstport with Multiple Aerial Robots”, accepted by IEEE Transactions on
obotics.
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Homotopy Classes of Trajectories

w ‘ 5 ’
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Al dalt

® Coordinated motion planning
for towing/skimming

® Finding geodesics (plans,
controls) in complex spaces

® Exploration

A

initial |
‘ _____
Exploration e ? _______
[ |
dete Planning, optimal control

Engineering




Homotopy and Homology

Homotopy Homology
T1 ~ T2 T4 Can be continuously T ~ To 1 U—19 =0A
deformed into T,
To o T3 To ™~ T3

Homotopy is easy to understand, but difficult to compute.

Homology groups can be computed (Hatcher, 2002)!

Penn
Engineering
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Homologous but not homotopic

1 U —T9o — (’9A1 U@AQ

Homotopic implies homologous, but
converse not necessarily true!

36




H-Signature

Find a |-form whose integral along a trajectory encodes
information about the homology (homotopy) class

&lenn

A homology (homotopy)
class invariant for T

37




H(t)= | w

For single path-connected obstacle in two dimensions, the H-

signature (homology class invariant) can by computed from the
Cauchy Residue Theorem

Example: point obstacles in two-dimensional space

1 1
: dz =
27i /yz—zc Q

Example: One dimensional obstacles in three-dimensional space (linking number)




Homology classes and planning

Two Key ideas
1 H-signature to identify the homology class of .

2 Graph search to find trajectories

wikipedia.org

39




Homology classes and planning

Two Key ideas
1 H-signature to identify the homology class of .

2 Graph search to find trajectories

n, In “closed” list (expanded)
— next node to expand is n, ....

Cost
chidnode  G(NgtartM2) = g(Nstart1) + cost(e)

\

Parent node

H-signature

H(nstarth) — H(nstartnl) -+ H(e)

Find optimal paths with constraints on H 0




(z;, H(ey)

(z,, H(e)+H(ey))

(Zg , H(e,)tH(e,))

JAERERY
AERRRDY

(I

41




Planning in two dimensions

Construct a (vector) analytic function
with singularities at “representative
points” in the complex plane.

Leverage Cauchy Integral and Residue

F(z) =

Theorems to design an additive homotopy

class invariant.

H(T) = /T|F(,7:')dz'

(D (diff. 1-form)

Graph-search based planning with
homotopy class constraints.

Ima

fo(2)
z—C1

fo(#)
z2—C1

fo(z)

z—C1

20 40

OHimbaintinsrecnsiipdtion Homotopy class exploration
Optimal planning with in a large environment

homotopy class constraints
(visibility constraint)

(1000x1000 discretized)

42




Planning in three dimensions

Biot-Savart’s Law: B(r) =

@/ (x —r) x dx

dr Js  [lx—r|]?

Ampere’s Law: =(C) := / B(1) - dl = tolenet
Cl

I
QD (diff. 1-form)

B: Magnetic field vector
U, Magnetic constant (can be chosen as |)

Skeletons of Simple Homotopy
Inducing Obstacles are modeled as
a current carrying conductors

h-signature of trajectory z:  H(7) = [h((7), ho(7), hoar ()]
where, B B i (x —r) x dx
i) = [ B B = [ S

[Bhattacharya et al, RSS 2011] 43




Results in 3-D

Planning in X-Y-Z configuration space: Planning in Space Time

€ B

Exploration of 4 Exploration of 4
homotopy classes in homotopy classes
presence of 2 SHIOs in presence of 4 SHIOs

by, T Y
e IR

Optimal control with space time constraints (Mellinger and Kumar, 2011)

2130 I
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Linking Number in D-Dimensional Euclidean Spaces
Key idea

Construct S, a (D-2)-dimensional homotopy equivalent of an
obstacle

Find a differential I-form that, when integrated along a closed
curve, gives its linking number with S.

® Establish a surjective map between R”-§ and R”-{0} and exploit the known
formulae for closed but non-exact differential forms in R”-{0}.

Example (D=2)

1
df = (—ydzx + zdy)
ng DR dsy Adsa Ao Adsp_q Adsgpr A--- Adsp
1 Sk
Oi(s) =

45




Linking Number in Punctured Euclidean Spaces
Multiple Obstacles

Find a differential I-form that, when integrated along a closed
curve, gives its linking number with S.

® Establish a surjective map between R” -S and R” -{0} and exploit the known
formulae for closed but non-exact differential forms in R” -{0}.

® Decompose S ((D-2)-dimensional skeleton) into M connected components:

SiuUSoU---USy =S

D “1
ZZ JkXS ) dz; 7—[(7'):/ wz

| WM

UF(x;8) = (—1)F7Hst<h) / Gr(x —x') doy Adahy--- Aol a) Ao Ada
Js
1 Sk
Ap—1 (2 482+ + 52

Gr(s) = 5
k )D/

[Bhattacharya, Lipsky, Ghrist and Kumar, 2012 (submitted)] 46




Problem |

Generate optimal trajectory with homology class

constraints

Optimization

Minimize cost functional

1
min/ L (q, q, .. .,q(r)) dt
qa(t) Jo

Non convex

Constraints

Trajectory belonging to a specifi

H(q(1)) = Haes

B Penn
& Enginccring

Easy to compute

homology class

47




Problem 2

Generate optimal trajectory with homotopy class
constraints

Optimization Harder to
compute

Minimize cost functional
1
min/ L (q, q,... ,q(r)) dt
q(t) Jo

Trajectory belonging to a specified homotopy class

Constraints

Assumptions
| Polygonal Obstacles [Kim, Bhattacharya, Sreenath,
Kumar,ARK 2012]
=nm 2. Quadratic Cost

*_¥ Engineering

48




3

m
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Conclusion

Geometry, kinematics and statics of cable-driven
systems introduce challenges and opportunities

® Homotopy classes (and homology classes)
® Instantaneous kinematics

® Direct and Inverse kinematics

® Dynamics and control

® Scaling up to large numbers

ing
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