

Algebraic Geometry

Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Kinematics and Algebraic Geometry

Manfred L. Husty Hans-Peter Schröcker

Institute of Basic Sciences in Engineering, Unit Geometry and CAD,
University Innsbruck, Austria
manfred.husty@uibk.ac.at

Workshop on 21st Century Kinematics, Chicago 2012

Outline of Lecture

Algebraic Geometry

Manfred L. Husty,
Hans-Peter

Hans-Peter Schröcker

Introduction

Quaternions

Algebraic Geometry

Kinematic mapping

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

- 1 Introduction
- 2 Kinematic mapping
- 3 Quaternions
 - The Study Quadric
- 4 Algebraic Geometry and Kinematics
 - Constraint Varieties
 - Image space transformations
 - Affine (Projective) Varieties Ideals
 - Some examples
- Methods to establish the sets of equations the canonical equations
- 6 Constraint equations and mechanism freedom
- 7 The TSAI-UPU Parallel Manipulator
 - Solving the system of equations
 - Operation modes
 - Singular poses
 - Changing operation modes
- 8 Synthesis of mechanisms
 - Planar Burmester Problem
 - Spherical Four-bar Synthesis

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Introduction

Computational Kinematics is that branch of kinematics which involves intensive computations not only of numerical type but also of symbolic nature (Angeles 1993).

Algebraic Geometry

Manfred L. Hustv.

Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

and Kinematics

Methods to

establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Introduction

Computational Kinematics is that branch of kinematics which involves intensive computations not only of numerical type but also of symbolic nature (Angeles 1993).

Within CK one tries to answer fundamental questions arising in the analysis and synthesis of kinematic chains.

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Introduction

Computational Kinematics is that branch of kinematics which involves intensive computations not only of numerical type but also of symbolic nature (Angeles 1993).

- Within CK one tries to answer fundamental questions arising in the analysis and synthesis of kinematic chains.
- Kinematic chains are constituent elements of serial or parallel robots, wired robots, humanoid robots, walking and jumping machines or rolling and autonomous robots.

Manfred L. Husty Hans-Peter Schröcker

Introduction
Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of

mechanisms

Introduction

Computational Kinematics is that branch of kinematics which involves intensive computations not only of numerical type but also of symbolic nature (Angeles 1993).

- Within CK one tries to answer fundamental questions arising in the analysis and synthesis of kinematic chains.
- Kinematic chains are constituent elements of serial or parallel robots, wired robots, humanoid robots, walking and jumping machines or rolling and autonomous robots.
- The fundamental questions, going far beyond the classical kinematics involve the number of solutions, complex or real to, for example, forward or inverse kinematics, the description of singular solutions, the mathematical solution of workspace or synthesis questions.

Introduction Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations - the canonical equations

Constraint equations and mechanism freedom

The TSALUPU Parallel Manipulator Synthesis of mechanisms

Introduction

Computational Kinematics is that branch of kinematics which involves intensive computations not only of numerical type but also of symbolic nature (Angeles 1993).

- Within CK one tries to answer fundamental questions arising in the analysis and synthesis of kinematic chains.
- Kinematic chains are constituent elements of serial or parallel robots, wired robots, humanoid robots, walking and jumping machines or rolling and autonomous robots.
- The fundamental questions, going far beyond the classical kinematics involve the number of solutions, complex or real to, for example, forward or inverse kinematics, the description of singular solutions, the mathematical solution of workspace or synthesis questions.
- Such problems are often described by systems of multivariate algebraic or functional equations and it turns out that even relatively simple kinematic problems involving multi-parameter systems lead to complicated nonlinear equations.

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of mechanisms

Introduction

Computational Kinematics is that branch of kinematics which involves intensive computations not only of numerical type but also of symbolic nature (Angeles 1993).

- Within CK one tries to answer fundamental questions arising in the analysis and synthesis of kinematic chains.
- Kinematic chains are constituent elements of serial or parallel robots, wired robots, humanoid robots, walking and jumping machines or rolling and autonomous robots.
- The fundamental questions, going far beyond the classical kinematics involve the number of solutions, complex or real to, for example, forward or inverse kinematics, the description of singular solutions, the mathematical solution of workspace or synthesis questions.
- Such problems are often described by systems of multivariate algebraic or functional equations and it turns out that even relatively simple kinematic problems involving multi-parameter systems lead to complicated nonlinear equations.
- Geometric insight and geometric preprocessing are often key to the solution

Manfred L. Hus

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

RINEMATICS Introduction

Manfred L. Hus Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Introduction

Analytic description of kinematic chains:

Parametric and implicit representations

Manfred L. Hus Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

and Kinematics

Methods to establish the sets of equations – the

canonical equations

Constraint
equations and
mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Introduction

- Parametric and implicit representations
- Different parametrizations of the displacement group SE(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)

Manfred L. Hus Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

and Kinematics

Methods to

establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Introduction

- Parametric and implicit representations
- Different parametrizations of the displacement group SE(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains

Manfred L. Hus Hans-Peter

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Introduction

- Parametric and implicit representations
- Different parametrizations of the displacement group SE(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains
- Very often only a single numerical solution is obtained

Manfred L. Hus Hans-Peter

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of

mechanisms

Introduction

- Parametric and implicit representations
- Different parametrizations of the displacement group SE(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains
- Very often only a single numerical solution is obtained
- Complete analysis and synthesis needs all solutions

Manfred L. Hust Hans-Peter

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of

mechanisms

Introduction

- Parametric and implicit representations
- Different parametrizations of the displacement group SE(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains
- Very often only a single numerical solution is obtained
- Complete analysis and synthesis needs all solutions
- We propose the use of algebraic constraint equations, as to be able to use strong methods and algorithms from algebraic geometry

Algebraic Geometry

Manfred L. Hus Hans-Peter

Introduction Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of mechanisms

- Parametric and implicit representations
- Different parametrizations of the displacement group SE(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains
- Very often only a single numerical solution is obtained
- Complete analysis and synthesis needs all solutions
- We propose the use of algebraic constraint equations, as to be able to use strong methods and algorithms from algebraic geometry
- An important task is to find the simplest algebraic constraint equations, that describe the chains.

Algebraic Geometry

Hans-Pet Schröcke

Introduction Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of mechanisms

- Parametric and implicit representations
- Different parametrizations of the displacement group SE(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains
- Very often only a single numerical solution is obtained
- Complete analysis and synthesis needs all solutions
- We propose the use of algebraic constraint equations, as to be able to use strong methods and algorithms from algebraic geometry
- An important task is to find the simplest algebraic constraint equations, that describe the chains.
- Geometric and algebraic preprocessing is needed before elimination,
 Gröbner base computation or numerical solution process starts

Algebraic Geometry

Manfred I Husty

Manfred L. Hus Hans-Peter Schröcker

Introduction Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of mechanisms

- Parametric and implicit representations
- Different parametrizations of the displacement group SE(3) (Euler angles, Rodrigues parameters, Euler parameters, Study parameters, quaternions, dual quaternions)
- Most the time vector loop equations are used to describe the chains
- Very often only a single numerical solution is obtained
- Complete analysis and synthesis needs all solutions
- We propose the use of algebraic constraint equations, as to be able to use strong methods and algorithms from algebraic geometry
- An important task is to find the simplest algebraic constraint equations, that describe the chains.
- Geometric and algebraic preprocessing is needed before elimination,
 Gröbner base computation or numerical solution process starts
- Algebraic constraint equations yield answers to the overall behavior of a kinematic chain → Global Kinematics

Algebraic Geometry

Introduction

Kinematic mapping Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations - the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of mechanisms

H-P Schröcker

D Walter

Mehdi Tale Masouleh, Clément Gosselin (Laval University, Quebec City)

J.M. Selig (London, UK)

P. Zsombor-Murray, M. J. D. Hayes (McGill, Montreal)

A. Karger (Charles University Prag, Czech Republic)

Manfred L. Husty, Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Introduction

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Introduction

In the following I want to show

■ Some algebraic basics of kinematics

Kinematics and

Algebraic Geometry

Manfred L. Husty,

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Introduction

- Some algebraic basics of kinematics
- How algebraic constraint equations can be obtained from parametric equations involving sines and cosines

RINEMATICS Introduction

Kinematics and Algebraic Geometry Manfred L. Husty, Hans-Peter

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

- Some algebraic basics of kinematics
- How algebraic constraint equations can be obtained from parametric equations involving sines and cosines
- How freedom of mechanisms can be formulated within this frame

Algebraic Geometry Manfred L. Husty,

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Parallel Mani Synthesis of mechanisms

- Some algebraic basics of kinematics
- How algebraic constraint equations can be obtained from parametric equations involving sines and cosines
- How freedom of mechanisms can be formulated within this frame
- How the same equations can be used for analysis and synthesis

Algebraic Geometry

Manfred L. Husty,

Hans-Peter

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of mechanisms

- Some algebraic basics of kinematics
- How algebraic constraint equations can be obtained from parametric equations involving sines and cosines
- How freedom of mechanisms can be formulated within this frame
- How the same equations can be used for analysis and synthesis
- How singularities can be obtained within the algebraic formulation

Algebraic Geometry

Manfred L. Husty,
Hans-Peter

Introduction
Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of mechanisms

- Some algebraic basics of kinematics
- How algebraic constraint equations can be obtained from parametric equations involving sines and cosines
- How freedom of mechanisms can be formulated within this frame
- How the same equations can be used for analysis and synthesis
- How singularities can be obtained within the algebraic formulation
- How this framework can be used for the analysis of lower dof parallel manipulators

Kinematic mapping

Kinematics and Algebraic Geometry Manfred L. Husty,

Hans-Peter Schröcker

Introduction

Kinematic mappi

Quaternions
Algebraic Geometry

and Kinematics
Methods to

establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Euclidean displacement:

$$\gamma \colon \mathbb{R}^3 \to \mathbb{R}^3, \quad \mathbf{x} \mapsto \mathbf{A}\mathbf{x} + \mathbf{a}$$
 (1)

 $\textbf{A} \text{ proper orthogonal } 3\times 3 \text{ matrix, } \textbf{a} \in \mathbb{R}^3 \dots \text{ vector}$ group of Euclidean displacements: SE(3)

$$\begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} \mapsto \begin{bmatrix} 1 & \mathbf{o}^T \\ \mathbf{a} & \mathbf{A} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}. \tag{2}$$

Introduction

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations - the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Kinematic mapping

Study's kinematic mapping x:

$$\varkappa: \alpha \in \mathrm{SE}(3) \mapsto \mathbf{x} \in \mathbb{P}^7$$

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Kinematic mapping

Study's kinematic mapping \varkappa :

$$\varkappa$$
 : $\alpha \in SE(3) \mapsto \mathbf{x} \in \mathbb{P}^7$

pre-image of ${\bf x}$ is the displacement α

$$\frac{1}{\Delta} \begin{bmatrix} \Delta & 0 & 0 & 0 \\ p & x_0^2 + x_1^2 - x_2^2 - x_3^2 & 2(x_1 x_2 - x_0 x_3) & 2(x_1 x_3 + x_0 x_2) \\ q & 2(x_1 x_2 + x_0 x_3) & x_0^2 - x_1^2 + x_2^2 - x_3^2 & 2(x_2 x_3 - x_0 x_1) \\ r & 2(x_1 x_3 - x_0 x_2) & 2(x_2 x_3 + x_0 x_1) & x_0^2 - x_1^2 - x_2^2 + x_3^2 \end{bmatrix}$$
(3)

$$p = 2(-x_0y_1 + x_1y_0 - x_2y_3 + x_3y_2),$$

$$q = 2(-x_0y_2 + x_1y_3 + x_2y_0 - x_3y_1),$$

$$r = 2(-x_0y_3 - x_1y_2 + x_2y_1 + x_3y_0),$$
(4)

$$\Delta = x_0^2 + x_1^2 + x_2^2 + x_3^2.$$

Manfred L. Husty, Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

and Kinematics

establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Kinematic mapping

Study's kinematic mapping \varkappa :

$$\varkappa:\alpha\in\mathrm{SE}(3)\mapsto\mathbf{x}\in\mathbb{P}^7$$

pre-image of ${\bf x}$ is the displacement α

$$\frac{1}{\Delta} \begin{bmatrix} \Delta & 0 & 0 & 0 \\ p & x_0^2 + x_1^2 - x_2^2 - x_3^2 & 2(x_1x_2 - x_0x_3) & 2(x_1x_3 + x_0x_2) \\ q & 2(x_1x_2 + x_0x_3) & x_0^2 - x_1^2 + x_2^2 - x_3^2 & 2(x_2x_3 - x_0x_1) \\ r & 2(x_1x_3 - x_0x_2) & 2(x_2x_3 + x_0x_1) & x_0^2 - x_1^2 - x_2^2 + x_3^2 \end{bmatrix}$$
(3

$$p = 2(-x_0y_1 + x_1y_0 - x_2y_3 + x_3y_2),$$

$$q = 2(-x_0y_2 + x_1y_3 + x_2y_0 - x_3y_1),$$

$$r = 2(-x_0y_3 - x_1y_2 + x_2y_1 + x_3y_0),$$
(4)

 $\Delta = x_0^2 + x_1^2 + x_2^2 + x_3^2.$

$$S_6^2$$
: $x_0 y_0 + x_1 y_1 + x_2 y_2 + x_3 y_3 = 0$, x_i not all 0 (5)

 $[x_0 : \cdots : y_3]^T$ Study parameters = parametrization of SE(3) with dual quaternions

Manfred L. Hu Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Kinematic mapping

How do we get the Study parameters when a proper orthogonal matrix $\mathbf{A} = [a_{ij}]$ and the translation vector $\mathbf{a} = [a_k]^T$ are given?

Manfred L. Hus Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Kinematic mapping

How do we get the Study parameters when a proper orthogonal matrix $\mathbf{A} = [a_{ij}]$ and the translation vector $\mathbf{a} = [a_k]^T$ are given?

Cayley map, not singularity free (180°)

Kinematic mapping

Algebraic Geometry

Manfred L. Husty,
Hans-Peter

Schröcker Introduction

10 ...

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of mechanisms How do we get the Study parameters when a proper orthogonal matrix $\mathbf{A} = [a_{ij}]$ and the translation vector $\mathbf{a} = [a_k]^T$ are given?

Cayley map, not singularity free (180°)

Rotation part:

$$x_0: x_1: x_2: x_3 = 1 + a_{11} + a_{22} + a_{33}: a_{32} - a_{23}: a_{13} - a_{31}: a_{21} - a_{12}$$

$$= a_{32} - a_{23}: 1 + a_{11} - a_{22} - a_{33}: a_{12} + a_{21}: a_{31} + a_{13}$$

$$= a_{13} - a_{31}: a_{12} + a_{21}: 1 - a_{11} + a_{22} - a_{33}: a_{23} + a_{32}$$

$$= a_{21} - a_{12}: a_{31} + a_{13}: a_{23} - a_{22}: 1 - a_{11} - a_{22} + a_{33}$$

$$= a_{21} - a_{12}: a_{21} + a_{13}: a_{23} - a_{22}: 1 - a_{11} - a_{22} + a_{33}$$
(6)

Translation part:

$$2y_0 = a_1x_1 + a_2x_2 + a_3x_3, \quad 2y_1 = -a_1x_0 + a_3x_2 - a_2x_3, 2y_2 = -a_2x_0 - a_3x_1 + a_1x_3, \quad 2y_3 = -a_3x_0 + a_2x_1 - a_1x_2.$$
 (7)

Manfred L. Hus Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Ge

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Remark: some people have been working on this topic like

E. Study, W. Blaschke, E.A. Weiss,

A. Yang, B. Roth, B. Ravani (and his students), A. Karger, W. Ströher, H. Stachel,....

sometimes using different names like Clifford Algebra: M. McCarthy...

Algebraic Geometry

Manfred L. Hus Hans-Peter Schröcker

Introduction

Quaternions

Algebraic Geometry and Kinematics

Kinematic mapping

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Remark: some people have been working on this topic like

E. Study, W. Blaschke, E.A. Weiss,

A. Yang, B. Roth, B. Ravani (and his students), A. Karger, W. Ströher, H. Stachel,....

sometimes using different names like Clifford Algebra:

M. McCarthy...

Example:

A rotation about the z-axis through the angle φ is described by the matrix

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi & 0 \\ 0 & \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \tag{8}$$

Its kinematic image, computed via (6) and (7) is

$$\mathbf{r} = [1 + \cos \varphi : 0 : 0 : \sin \varphi : 0 : 0 : 0 : 0]^{T}.$$
(9)

As φ varies in $[0,2\pi)$, ${\bf r}$ describes a straight line on the Study quadric which reads after algebraization

$$\mathbf{r} = [1:0:0:u:0:0:0:0]^T.$$
 (10)

Algebraic Geometry

Manfred L. Husty,

Manfred L. Hust Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

A special one parameter motion is defined by the matrix

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos t & -\sin t & 0 \\ 0 & \sin t & \cos t & 0 \\ \sin \frac{t}{2} & 0 & 0 & 1 \end{bmatrix}. \tag{11}$$

Its kinematic image, computed via (6) and (7) reads

$$\mathbf{r} = \left[2 + 2\cos t : 0 : 0 : 2\sin t : \sin \frac{t}{2}\sin t : 0 : 0 : -\frac{1}{2}\sin \frac{t}{2}(2 + 2\cos t) \right]$$
 (12)

After algebraization and some manipulation we obtain

$$\mathbf{r} = [-1 + u^4 : 0 : 0 : -2u(1 + u^2) : 2u^2 : 0 : 0 : u(1 - u^2)], \tag{13}$$

represents a rational curve of degree four on the Study quadric.

The motion corresponding to this curve is a special case of the well known Bricard motions where all point-paths are spherical curves.

Manfred L. Husty, Hans-Peter

Introduction

Kinematic mappi

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Kinematic mapping

 S_6^2 is called Study quadric

Kinematic mapping

Algebraic Geometry

Manfred L. Husty,

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

 S_6^2 is called Study quadric

the map between S_6^2 and SE(3) is not one to one,

$$F: x_0 = x_1 = x_2 = x_3 = 0, \quad E: y_0^2 + y_1^2 + y_2^2 + y_3^2 = 0. \tag{14}$$

Exceptional generator F, exceptional quadric E

(these things come from the circle points in Euclidean geometry!)

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to

establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Planar displacements: $x_2 = x_3 = 0$, $y_0 = y_1 = 0$

$$\frac{1}{x_0^2 + x_3^2} \begin{bmatrix} x_0^2 + x_3^2 & 0 & 0 \\ -2(x_0y_1 - x_3y_2) & x_0^2 - x_3^2 & -2x_0x_3 \\ -2(x_0y_2 + x_3y_1) & 2x_0x_3 & x_0^2 - x_3^2 \end{bmatrix}$$

SE(2) (we omit the last row and the last column)

Spherical displacements: $y_i = 0$

$$\frac{1}{\Delta} \begin{bmatrix} x_0^2 + x_1^2 - x_2^2 - x_3^2 & 2(x_1 x_2 - x_0 x_3) & 2(x_1 x_3 + x_0 x_2) \\ 2(x_1 x_2 + x_0 x_3) & x_0^2 - x_1^2 + x_2^2 - x_3^2 & 2(x_2 x_3 - x_0 x_1) \\ 2(x_1 x_3 - x_0 x_2) & 2(x_2 x_3 + x_0 x_1) & x_0^2 - x_1^2 - x_2^2 + x_3^2 \end{bmatrix}$$
 (15)

where
$$\Delta = x_0^2 + x_1^2 + x_2^2 + x_3^2$$
. $\to SO^+(3)$

generate 3-spaces on S_6^2

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Planar displacements: $x_2 = x_3 = 0$, $y_0 = y_1 = 0$

$$\frac{1}{x_0^2 + x_3^2} \begin{bmatrix} x_0^2 + x_3^2 & 0 & 0\\ -2(x_0 y_1 - x_3 y_2) & x_0^2 - x_3^2 & -2x_0 x_3\\ -2(x_0 y_2 + x_3 y_1) & 2x_0 x_3 & x_0^2 - x_3^2 \end{bmatrix}$$

SE(2) (we omit the last row and the last column)

Spherical displacements: $y_i = 0$

$$\frac{1}{\Delta}\begin{bmatrix} x_0^2 + x_1^2 - x_2^2 - x_3^2 & 2(x_1x_2 - x_0x_3) & 2(x_1x_3 + x_0x_2) \\ 2(x_1x_2 + x_0x_3) & x_0^2 - x_1^2 + x_2^2 - x_3^2 & 2(x_2x_3 - x_0x_1) \\ 2(x_1x_3 - x_0x_2) & 2(x_2x_3 + x_0x_1) & x_0^2 - x_1^2 - x_2^2 + x_3^2 \end{bmatrix}$$
(15)

where $\Delta = x_0^2 + x_1^2 + x_2^2 + x_3^2. o ext{ $SO^+(3)$}$

generate 3-spaces on S_6^2 more properties:

J. Selig, Geometric Fundamentals of Robotics, 2nd. ed. Springer 2005 H., Pfurner, Schröcker, Brunnthaler. Algebraic methods in mechanism analysis and synthesis. Robotica, 25(6):661-675, 2007.

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions
The Study Quadric

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Quaternions

The set of quaternions $\mathbb H$ is the vector space $\mathbb R^4$ together with the quaternion multiplication

$$(a_0, a_1, a_2, a_3) * (b_0, b_1, b_2, b_3) = (a_0b_0 - a_1b_1 - a_2b_2 - a_3b_3, a_0b_1 + a_1b_0 + a_2b_3 - a_3b_2, a_0b_2 - a_1b_3 + a_2b_0 - a_3b_1, a_0b_3 - a_1b_2 - a_2b_1 + a_3b_0).$$

$$(16)$$

The triple $(\mathbb{H}, +, \star)$ (with component wise addition) forms a skew field. The real numbers can be embedded into this field via $x \mapsto (x,0,0,0)$, and vectors $\mathbf{x} \in \mathbb{R}^3$ are identified with quaternions of the shape $(0,\mathbf{x})$.

Introduction

Kinematic mapping

Quaternions

The Study Quadric

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Every quaternion is a unique linear combination of the four basis quaternions $\mathbf{1} = (1,0,0,0), \mathbf{i} = (0,1,0,0), \mathbf{j} = (0,0,1,0),$ and $\mathbf{k} = (0,0,0,1).$

The multiplication table is

*	1	i	j	k
1	1	i	j	k
i	i	-1	k	− j
j	j	$-\mathbf{k}$	-1	i
k	k	j	−i	-1

Conjugate quaternion and norm are defined as

$$\overline{A} = (a_0, -a_1, -a_2, -a_3), \quad \|A\| = \sqrt{A \star \overline{A}} = \sqrt{a_0^2 + a_1^2 + a_2^2 + a_3^2}. \tag{17}$$

Algebraic Geometry

Manfred L. Husty,

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions
The Study Quadric

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Quaternions are closely related to spherical kinematic mapping.

Consider a vector $\mathbf{a} = [a_1, a_2, a_3]^T$ and a matrix \mathbf{X} of the shape (15).

The product $\mathbf{b} = \mathbf{X} \cdot \mathbf{a}$ can also be written as

$$B = X \star A \star \overline{X} \tag{18}$$

where $X = (x_0, x_1, x_2, x_3)$, ||X|| = 1 and $A = (0, \mathbf{a})$, $B = (0, \mathbf{b})$.

From this follows:

Algebraic Geometry

Manfred L. Husty,

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions
The Study Quadric

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Quaternions are closely related to spherical kinematic mapping.

Consider a vector $\mathbf{a} = [a_1, a_2, a_3]^T$ and a matrix \mathbf{X} of the shape (15).

The product $\mathbf{b} = \mathbf{X} \cdot \mathbf{a}$ can also be written as

$$B = X \star A \star \overline{X} \tag{18}$$

where $X = (x_0, x_1, x_2, x_3)$, ||X|| = 1 and $A = (0, \mathbf{a})$, $B = (0, \mathbf{b})$.

From this follows:

Spherical displacements can also be described by unit quaternions and spherical kinematic mapping maps a spherical displacement to the corresponding unit quaternion.

Algebraic Geometry

Manfred L. Husty,

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions The Study Quadric

Algebraic Geometry

and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

To describe general Euclidean displacements extend the concept of quaternions.

A $dual\ quaternion\ Q$ is a quaternion over the ring of dual numbers

$$Q = Q_0 + \varepsilon Q_1, \tag{19}$$

where $\varepsilon^2 = 0$.

Kinematics and Algebraic Geometry Manfred L. Husty.

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions
The Study Quadric

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

The algebra of dual quaternions has eight basis elements 1, i, j, k, ε , ε i, ε j, and ε k and the multiplication table

*	1	i	j	k	ε	arepsiloni	ϵ j	arepsilonk
		i			ε	ε i	ε j	ε k
i	i	-1	k	−j	ε i	-arepsilon1	arepsilonk	-arepsilonj
j	j	$-\mathbf{k}$		i		-arepsilonk	-arepsilon1	arepsiloni
k	k	j	−i	-1	ε k	arepsilonj	-arepsiloni	-arepsilon1
arepsilon1				arepsilonk		0	0	0
arepsiloni	ε i	-arepsilon1	arepsilonk	-arepsilonj	0	0	0	0
arepsilonj	ε j	-arepsilonk	-arepsilon1	arepsiloni	0	0	0	0
ε k	ε k	ε j	-arepsiloni	-arepsilon1	0	0	0	0

Algebraic Geometry

Manfred L. Hustv.

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions
The Study Quadric

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Dual quaternions know two types of conjugation.

The conjugate quaternion and the conjugate dual quaternion of a dual quaternion $Q=x_0+\varepsilon y_0+\mathbf{x}+\varepsilon \mathbf{y}$ are defined as

$$\overline{Q} = x_0 + \varepsilon y_0 - \mathbf{x} - \varepsilon \mathbf{y}$$
 and $Q_e = x_0 - \varepsilon y_0 + \mathbf{x} - \varepsilon \mathbf{y}$, (20)

respectively. The norm of a dual quaternion is

$$||Q|| = \sqrt{Q\overline{Q}}.$$
 (21)

Introduction

Kinematic mapping

Quaternions
The Study Quadric

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

With these definitions, the equation $\mathbf{b} = \mathbf{X} \cdot \mathbf{a}$ where \mathbf{X} is a matrix of the shape (3) can be written as

$$B = X_e \star A \star \overline{X} \tag{22}$$

where
$$X = \mathbf{x} + \varepsilon \mathbf{y}$$
, $||X|| = 1$, $\mathbf{x} = (x_0, ..., x_3)^T$, $\mathbf{y} = (y_0, ..., y_3)^T$, and $\mathbf{x} \cdot \mathbf{y} = 0$.

The last condition is precisely the Study condition (5).

A and B are dual quaternions of the type: $A = 1 + \varepsilon \mathbf{a}$, $B = 1 + \varepsilon \mathbf{b}$

Constraint varieties

Kinematics and Algebraic Geometry

Manfred L. Hus Hans-Peter Schröcker

Introduction

Kinematic mapping
Quaternions

Algebraic Geometry

and Kinematics

Image space transformations

Affine (Projective) Varieties - Ideals Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms



Constraint varieties

Algebraic Geometry

Manfred L. Husty

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Constraint Variation

Image space transformations Affine (Projective) Varieties - Ideals

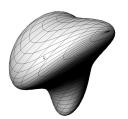
Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms



 \blacksquare a constraint that removes one degree of freedom maps to a hyper-surface in \mathbb{P}^7

Constraint varieties

Algebraic Geometry

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

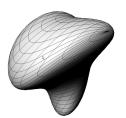
Image space transformations Affine (Projective) Varieties - Ideals Some examples

Methods to establish the sets of equations - the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms



- a constraint that removes one degree of freedom maps to a hyper-surface in \mathbb{P}^7
- a set of constraints corresponds to a set of polynomial equations

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping
Quaternions

Algebraic Geometry

and Kinematics

Constraint Variet Image space

transformations
Affine (Projective)
Varieties - Ideals
Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

A simple example

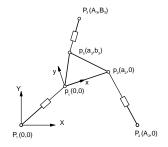


Figure: Planar 3-RPR parallel mechanism.

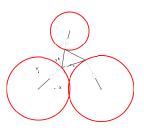


Figure: Geometric interpretations

A simple example

Kinematics and Algebraic Geometry Manfred L. Husty,

Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

and Kinematics

Image space transformations

transformations
Affine (Projective)
Varieties - Ideals
Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

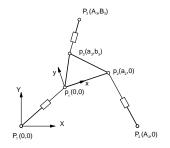


Figure: Planar 3-RPR parallel mechanism.

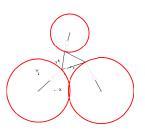


Figure: Geometric interpretations

Condition that one point of the moving system is bound to move on a circle

$$(x_2 - \frac{1}{2}(c_2 + C_2 - x_1(C_1 - c_1)))^2 + (x_3 - \frac{1}{2}(x_1(c_2 - C_2) - C_1 - c_1))^2 - \frac{1}{4}R^2(x_1^2 + 1) = 0,$$
(23)

Methods to establish the sets of equations - the canonical equations

Constraint equations and mechanism freedom

The TSALUPU Parallel Manipulator

Synthesis of mechanisms

A simple example

Three constraint equations:

$$h_1: \quad 4x_2^2 + 4x_3^2 + R_1 = 0$$

$$h_2: \quad 4x_2^2 - 4A_2x_3x_0 + 4x_3x_0a_2 + 4x_3^2 - 4x_1x_2a_2 - 4x_1A_2x_2 + 4x_1^2A_2a_2 - 2A_2a_2 + R_2 = 0$$

$$h_3: \quad 4x_2^2 + 4B_3x_0x_2 - 4A_3x_3x_0 - 4x_2x_0b_3 + 4x_3x_0a_3 + 4x_3^2 - 4x_1B_3x_0a_3$$

$$+4x_1A_3x_0b_34x_1x_2a_3-4x_1B_3x_3-4x_1A_3x_2-4x_1x_3b_3-+4x_1^2A_3a_3+4x_1^2B_3b_3-2B_3b_3-2A_3a_3+R_3=0.$$
 (24)

Algebraic Geometry

Introduction

Kinematic mapping Quaternions

Algebraic Geometry

and Kinematics

transformations Affine (Projective) Varieties - Ideals Some examples

Methods to establish the sets of equations - the canonical equations

Constraint equations and mechanism freedom

The TSALUPU Parallel Manipulator

Synthesis of mechanisms

A simple example

Three constraint equations:

 $h_1: 4x_2^2 + 4x_2^2 + R_1 = 0$

$$h_2: 4x_2^2 - 4A_2x_3x_0 + 4x_3x_0a_2 + 4x_3^2 - 4x_1x_2a_2 - 4x_1A_2x_2 + 4x_1^2A_2a_2$$

$$-2A_2a_2+R_2=0$$

$$\begin{split} h_3: \quad & 4x_2^2 + 4B_3x_0x_2 - 4A_3x_3x_0 - 4x_2x_0b_3 + 4x_3x_0a_3 + 4x_3^2 - 4x_1B_3x_0a_3 \\ & \quad + 4x_1A_3x_0b_34x_1x_2a_3 - 4x_1B_3x_3 - 4x_1A_3x_2 - 4x_1x_3b_3 - \\ & \quad + 4x_1^2A_3a_3 + 4x_1^2B_3b_3 - 2B_3b_3 - 2A_3a_3 + R_3 = 0. \end{split}$$

Figure: Geometric interpretation in kinematic image space

Image space transformations

Kinematics and Algebraic Geometry Manfred L. Husty,

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions
Algebraic Geometry

and Kinematics
Constraint Varieties

Image space

Affine (Projective) Varieties - Ideals Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Figure: Fixed and moving coordinate systems

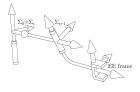


Figure: Robot coordinate systems

Image space transformations

Algebraic Geometry

Manfred L. Hustv.

Schröcker

Introduction
Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Constraint Varieties
Image space

Affine (Projective) Varieties - Ideals Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

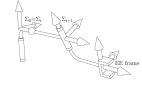


Figure: Fixed and moving coordinate systems

Figure: Robot coordinate systems

- lacktriangle The relative displacement lpha depends on the choice of fixed and moving frame
- Coordinate systems are usually attached to the base and the end-effector of a mechanism
- Changes of fixed and moving frame induce transformations on S₆², impose a geometric structure on S₆².

Manfred L. Husty,

Introduction

Kinematic mapping

кінетайс таррі

Quaternions

Algebraic Geometry and Kinematics

Constraint Varieties

Image space

Affine (Projective) Varieties - Ideals Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Image space transformations

$$\mathbf{y} = \mathbf{T}_f \mathbf{T}_m \mathbf{x}, \quad \mathbf{T}_m = \begin{bmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{B} & \mathbf{A} \end{bmatrix}, \quad \mathbf{T}_f = \begin{bmatrix} \mathbf{C} & \mathbf{O} \\ \mathbf{D} & \mathbf{C} \end{bmatrix},$$
 (25)

Image space transformations

Kinematics and Algebraic Geometry

Introduction

Kinematic mapping Quaternions

Algebraic Geometry and Kinematics

Constraint Varieties

Affine (Projective) Varieties - Ideals Some examples

Methods to establish the sets of equations - the canonical equations

Constraint equations and mechanism freedom

The TSALUPU Parallel Manipulator

Synthesis of mechanisms $\mathbf{y} = \mathbf{T}_f \mathbf{T}_m \mathbf{x}, \quad \mathbf{T}_m = \begin{bmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{B} & \mathbf{A} \end{bmatrix}, \quad \mathbf{T}_f = \begin{bmatrix} \mathbf{C} & \mathbf{O} \\ \mathbf{D} & \mathbf{C} \end{bmatrix},$ (25)

$$\mathbf{A} = \begin{bmatrix} m_0 & -m_1 & -m_2 & -m_3 \\ m_1 & m_0 & m_3 & -m_2 \\ m_2 & -m_3 & m_0 & m_1 \\ m_3 & m_2 & -m_1 & m_0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} m_4 & -m_5 & -m_6 & -m_7 \\ m_5 & m_4 & m_7 & -m_6 \\ m_6 & -m_7 & m_4 & m_5 \\ m_7 & m_6 & -m_5 & m_4 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} m_4 & -m_5 & -m_6 & -m_7 \\ m_5 & m_4 & m_7 & -m_6 \\ m_6 & -m_7 & m_4 & m_5 \\ m_7 & m_6 & -m_5 & m_4 \end{bmatrix}$$
(26)

$$\mathbf{C} = \begin{bmatrix} f_0 & -f_1 & -f_2 & -f_3 \\ f_1 & f_0 & -f_3 & f_2 \\ f_2 & f_3 & f_0 & -f_1 \\ f_3 & -f_2 & f_1 & f_0 \end{bmatrix}, \qquad \mathbf{D} = \begin{bmatrix} f_4 & -f_5 & -f_6 & -f_7 \\ f_5 & f_4 & -f_7 & f_6 \\ f_6 & f_7 & f_4 & -f_5 \\ f_7 & -f_6 & f_5 & f_4 \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} f_4 & -f_5 & -f_6 & -f_7 \\ f_5 & f_4 & -f_7 & f_6 \\ f_6 & f_7 & f_4 & -f_5 \\ f_7 & -f_6 & f_5 & f_4 \end{bmatrix}$$
 (27)

and **O** is the four by four zero matrix.

- T_m and T_f commute
- **T**_m and **T**_f induce transformations of P^7 that fix S_6^2 , the exceptional generator F, and the exceptional quadric $E \subset F$

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Constraint Varieties Image space transformations

transformations
Affine (Projective)

Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Affine (Projective) Varieties - Ideals

A set of constraints is described by a set of polynomials

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

and Kinematics

Constraint Varieties

Image space transformations

Affine (Projective)

Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Affine (Projective) Varieties - Ideals

- A set of constraints is described by a set of polynomials
- The set of polynomials forms a ring which is denoted by $k[x_0, ... x_n]$.

Algebraic Geometry

Constraint Varieties
Image space
transformations

transformations
Affine (Projective

Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Affine (Projective) Varieties - Ideals

- A set of constraints is described by a set of polynomials
- The set of polynomials forms a ring which is denoted by $k[x_0, ... x_n]$.
- If k is a field and f_1, \ldots, f_s are polynomials in $k[x_0, \ldots x_n]$, and if

$$V(f_1,...,f_s) = \{(a_1,...,a_n) \in k^n : f_i(a_1,...,a_n) = 0, \text{ for all } 1 \le i \le s\}$$

then $V(f_1,...,f_s)$ is called an affine variety defined by the polynomials f_i .

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics Constraint Varieties Image space transformations

Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Affine (Projective) Varieties - Ideals

- A set of constraints is described by a set of polynomials
- The set of polynomials forms a ring which is denoted by $k[x_0, ... x_n]$.
- If k is a field and $f_1, ..., f_s$ are polynomials in $k[x_0, ... x_n]$, and if

$$V(f_1,...,f_s) = \{(a_1,...,a_n) \in k^n : f_i(a_1,...,a_n) = 0, \text{ for all } 1 \le i \le s\}$$

then $\mathbf{V}(f_1,\ldots,f_s)$ is called an affine variety defined by the polynomials f_i .

The definition says essentially that the affine variety is the zero set of the defining polynomials.

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions
Algebraic Geometry

and Kinematics
Constraint Varieties
Image space
transformations

Varieties - Ideals
Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Affine (Projective) Varieties - Ideals

- A set of constraints is described by a set of polynomials
- The set of polynomials forms a ring which is denoted by $k[x_0,...x_n]$.
- If k is a field and f_1, \ldots, f_s are polynomials in $k[x_0, \ldots x_n]$, and if

$$V(f_1,...,f_s) = \{(a_1,...,a_n) \in k^n : f_i(a_1,...,a_n) = 0, \text{ for all } 1 \le i \le s\}$$

then $V(f_1,...,f_s)$ is called an affine variety defined by the polynomials f_i .

- The definition says essentially that the affine variety is the zero set of the defining polynomials.
- In case of homogeneous polynomials the variety is called a projective variety.

Manfred L. Husty Hans-Peter

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics Constraint Varieties Image space transformations

Varieties - Ideals
Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Affine (Projective) Varieties - Ideals

- A set of constraints is described by a set of polynomials
- The set of polynomials forms a ring which is denoted by $k[x_0,...x_n]$.
- If k is a field and f_1, \ldots, f_s are polynomials in $k[x_0, \ldots x_n]$, and if

$$V(f_1,...,f_s) = \{(a_1,...,a_n) \in k^n : f_i(a_1,...,a_n) = 0, \text{ for all } 1 \le i \le s\}$$

then $V(f_1, ..., f_s)$ is called an affine variety defined by the polynomials f_i .

- The definition says essentially that the affine variety is the zero set of the defining polynomials.
- In case of homogeneous polynomials the variety is called a projective variety.
- An ideal *I* is a subset of $k[x_0,...x_n]$ that satisfies the following properties:

(*i*)
$$0 \in I$$
.

(ii) If
$$f, g \in I$$
, then $f + g \in I$.

(iii) If
$$f \in I$$
, $g \in k$ then $fg \in I$.

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics Constraint Varieties Image space

transformations
Affine (Projective Varieties - Ideals
Some examples

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Affine (Projective) Varieties - Ideals

- A set of constraints is described by a set of polynomials
- The set of polynomials forms a ring which is denoted by $k[x_0,...x_n]$.
- If k is a field and $f_1, ..., f_s$ are polynomials in $k[x_0, ... x_n]$, and if

$$V(f_1,...,f_s) = \{(a_1,...,a_n) \in k^n : f_i(a_1,...,a_n) = 0, \text{ for all } 1 \le i \le s\}$$

then $V(f_1,...,f_s)$ is called an affine variety defined by the polynomials f_i .

- The definition says essentially that the affine variety is the zero set of the defining polynomials.
- In case of homogeneous polynomials the variety is called a projective variety.
- An ideal *I* is a subset of $k[x_0,...x_n]$ that satisfies the following properties:

(*i*)
$$0 \in I$$
.

(ii) If
$$f, g \in I$$
, then $f + g \in I$.

(iii) If
$$f \in I$$
, $g \in k$ then $fg \in I$.

D. A. Cox, J. B. Little, and D. O'Shea, Ideals, Varieties and Algorithms, Springer, third ed., 2007.

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions
Algebraic Geometry

and Kinematics

Constraint Varieties Image space transformations Affine (Projective) Varieties - Ideals

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Example: Stewart-Gough platform

Figure: Stewart-Gough platform

Sphere constraint:

in canonical form

$$4y_0^2 + 4y_3^2 + 4y_2^2 + 4y_1^2 - (x_1^2 + x_2^2 + x_0^2 + x_3^2)r = 0$$

Manfred L. Hu Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Constraint Varieties
Image space
transformations
Affine (Projective)
Varieties - Ideals

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Sphere constraint:

2 in general form

$$h: R(x_0^2 + x_1^2 + x_2^2 + x_3^2) + 4(y_0^2 + y_1^2 + y_2^2 + y_3^2) - 2x_0^2(Aa + Bb + Cc)$$

$$+ 2x_1^2(-Aa + Bb + Cc) + 2x_2^2(Aa - Bb - Cc) + 2x_3^2(Aa + Bb + Cc)$$

$$+ 2x_3^2(Aa + Bb - Cc) + 4[x_0x_1(Bc - Cb) + x_0x_2(Ca - Ac)$$

$$+ x_0x_3(Ab - Ba) - x_1x_2(Ab + Ba) - x_1x_3(Ac + Ca)$$

$$- x_2x_3(Bc + Cb) + (x_0y_1 - y_0x_1)(A - a) + (x_0y_2 - y_0x_2)(B - b)$$

$$+ (x_0y_3 - y_0x_3)(C - c) + (x_1y_2 - y_1x_2)(C + c) - (x_1y_3 - y_1x_3)(B + b)$$

$$+ (x_2y_3 - y_2x_3)(A + a)] = 0,$$
(28)

Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Constraint Varieties
Image space
transformations
Affine (Projective)
Varieties - Ideals

Methods to

establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Sphere constraint:

2 in general form

$$h: R(x_0^2 + x_1^2 + x_2^2 + x_3^2) + 4(y_0^2 + y_1^2 + y_2^2 + y_3^2) - 2x_0^2(Aa + Bb + Cc)$$

$$+ 2x_1^2(-Aa + Bb + Cc) + 2x_2^2(Aa - Bb - Cc) + 2x_3^2(Aa + Bb + Cc)$$

$$+ 2x_3^2(Aa + Bb - Cc) + 4[x_0x_1(Bc - Cb) + x_0x_2(Ca - Ac)$$

$$+ x_0x_3(Ab - Ba) - x_1x_2(Ab + Ba) - x_1x_3(Ac + Ca)$$

$$- x_2x_3(Bc + Cb) + (x_0y_1 - y_0x_1)(A - a) + (x_0y_2 - y_0x_2)(B - b)$$

$$+ (x_0y_3 - y_0x_3)(C - c) + (x_1y_2 - y_1x_2)(C + c) - (x_1y_3 - y_1x_3)(B + b)$$

$$+ (x_2y_3 - y_2x_3)(A + a)] = 0,$$
(28)

$$\begin{split} F := & [177x_2y_3 - 177x_3y_2 - 20x_1y_0 + 20x_0y_1 - 34059x_0x_3 + 12236x_2x_1 - x_0^2S_1 - x_1^2S_1 - x_3^2S_1 - x_2^2S_1, \\ & 156x_2y_3 - 156x_3y_2 - 101x_1y_0 + 101x_0y_1 + 68081x_0x_3 - 101796x_2x_1 - x_0^2S_2 - x_1^2S_2 - x_3^2S_2 - x_2^2S_2, \\ & -x_0^2S_3 - x_1^2S_3 - x_3^2S_3 - x_2^2S_3 - 198x_2y_3 + 198x_3y_2 - 61x_1y_0 + 61x_0y_1 - 68203x_0x_3 - 126565x_2x_1, \\ & 438313x_2^2 + x_0^2S_4 + x_1^2S_4 + x_3^2S_4 + x_2^2S_4 + 792x_2y_3 - 792x_3y_2 + 244x_1y_0 - 244x_0y_1 - 1370x_3y_1 + \\ & 422x_0y_2 - 422x_2y_0 + 1370y_3x_1 - 544796x_0x_3 + 505072x_2x_1 - 437869x_1^2 - 11x_0^2 + 455x_3^2, \\ & -438313x_2^2 - x_0^2S_5 - x_1^2S_5 - x_3^2S_5 - x_2^2S_5 + 792x_2y_3 - 792x_3y_2 + 244x_1y_0 - 244x_0y_1 + 1370x_3y_1 - \\ & -422x_0y_2 + 422x_2y_0 - 1370y_3x_1 - 544796x_0x_3 + 505072x_2x_1 + 437869x_1^2 + 11x_0^2 - 455x_3^2, \\ & x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3, \\ & -x_0^2W_1 - x_1^2W_1 - x_3^2W_1 - x_2^2W_1 - 204402x_0x_3 - 297x_2x_1] \end{split}$$

40 solutions, H. (1996)

Manfred L. Hus Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Implicitization Algorithm

Is there a method to generate constraint equations without (deep) insight in the geometric structure of a kinematic chain??

Manfred L. Husty, Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Implicitization Algorithm

Is there a method to generate constraint equations without (deep) insight in the geometric structure of a kinematic chain??

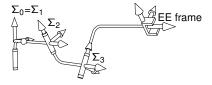


Figure: Canonical 3R-chain

the relative position of two rotation axes is described by the usual Denavit-Hartenberg parameters (α_i, a_i, d_i)

$$\mathbf{G}_{i} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ a_{i} & 1 & 0 & 0 \\ 0 & 0 & \cos(\alpha_{i}) & -\sin(\alpha_{i}) \\ d_{i} & 0 & \sin(\alpha_{i}) & \cos(\alpha_{i}) \end{pmatrix}. \tag{29}$$

$$\mathbf{M}_{i} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(u_{i}) & -\sin(u_{i}) & 0 \\ 0 & \sin(u_{i}) & \cos(u_{i}) & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \quad \text{or} \quad \mathbf{M}_{i} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ u & 0 & 0 & 1 \end{pmatrix}$$
(30)

Following this sequence of transformations the endeffector will have the following pose:

$$\mathbf{D} = \mathbf{M}_1 \cdot \mathbf{G}_1 \cdot \mathbf{M}_2 \cdot \mathbf{G}_2 \cdot \dots \cdot \mathbf{M}_n, \tag{31}$$

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

$parametric \rightarrow implicit$

What do we gain?

Kinematics and Algebraic Geometry Manfred L. Husty.

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

$parametric \rightarrow implicit$

What do we gain?

 Using all features of algebraic geometry symbolic software (Maple, Mathematica, Singular,) e.g.:

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of

mechanisms

$parametric \rightarrow implicit$

What do we gain?

 Using all features of algebraic geometry symbolic software (Maple, Mathematica, Singular,) e.g.:

with(PolynomialIdeals):

[\cdots:\Add Contract, EliminationIdeal, EquidimensionalDecomposition, Generators, HilbertDimension, IdealContainment, IdealInto, IdealMembership, Intersect, IsMaximal, IsPrimary, IsPrime, IsProper, IsRadical, IsZeroDimensional, MaximalIndependentSet, Multiply, NumberOfSolutions, Operators, PolynomialIdeal, PrimaryDecomposition, PrimeDecomposition, Quotient, Radical, RadicalMembership, Saturate, Simplify, UnivariatePolynomial, VanishingIdeal, ZeroDimensionalDecomposition, in, subset] with(Groebner);

[Basis,FGLM, HilbertDimension, HilbertPolynomial, HilbertSeries, Homogenize, InitialForm, InterReduce, IsProper, IsZeroDimensional, LeadingCoefficient, LeadingMonomial, LeadingTerm, MatrixOrder, MaximalIndependentSet, MonomialOrder, MultiblicationMatrix, MultivariateCyclicVector, NormalForm, NormalSet.

RationalUnivariateRepresentation, Reduce, RememberBasis,SPolynomial,Solve,SuggestVariableOrder, TestOrder, ToricIdealBasis.TrailingTerm. UnivariatePolynomial. Walk. WeightedDegreel

$parametric \rightarrow implicit$

Algebraic Geometry

Manfred L. Husty,
Hans-Peter

Schröcker

Introduction
Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

What do we gain?

 Using all features of algebraic geometry symbolic software (Maple, Mathematica, Singular, ...) e.g.:

with(PolynomialIdeals):

[\<,>\.\Add.Contract.EliminationIdeal, EquidimensionalDecomposition, Generators, HilbertDimension, deal Containment, IdealInfo, IdealMembership, Intersect, IsMaximal, IsPrimary, IsPrime, IsProper, IsRadical, IsZeroDimensional, MaximalIndependentSet, Multiply, NumberOfSolutions, Operators, PolynomialIdeal, PrimaryDecomposition, PrimeDecomposition, Quotient, Radical, RadicalMembership, Saturate, Simplify, UnivariatePolynomial, VanishingIdeal, ZeroDimensionalDecomposition, in, subset] with(Groebner);

[Basis,FGLM, HilbertDimension, HilbertPolynomial, HilbertSeries, Homogenize, InitialForm, InterReduce,IsProper, IsZeroDimensional,LeadingCoefficient,LeadingMonomial, LeadingTerm, MatrixOrder, MaximalIndependentSet, MonomialOrder, MultiplicationMatrix, MultivariateCyclicVector, NormalForm, NormalSet,

RationalUnivariateRepresentation, Reduce, RememberBasis,SPolynomial,Solve,SuggestVariableOrder, TestOrder, ToricIdealBasis,TrailingTerm, UnivariatePolynomial, Walk, WeightedDegree]

all solutions, sometimes a complete analytic description of a workspace.

parametric \rightarrow implicit

Algebraic Geometry

Introduction

Kinematic mapping Quaternions

Algebraic Geometry

and Kinematics

Methods to establish the sets of equations - the canonical equations

Constraint equations and mechanism freedom

Parallel Manipulator

The TSALUPU Synthesis of mechanisms

What do we gain?

 Using all features of algebraic geometry symbolic software (Maple, Mathematica. Singular,) e.g.:

with(PolynomialIdeals):

['<, > '.Add.Contract.EliminationIdeal, EquidimensionalDecomposition, Generators, HilbertDimension, IdealContainment, IdealInfo, IdealMembership, Intersect, IsMaximal, IsPrimary, IsPrime, IsProper, IsRadical, IsZeroDimensional, MaximalIndependentSet, Multiply, NumberOfSolutions, Operators, PolynomialIdeal, Primary Decomposition, Prime Decomposition, Quotient, Radical, Radical Membership, Saturate, Simplify, UnivariatePolynomial, VanishingIdeal, ZeroDimensionalDecomposition, in, subset with(Groebner);

[Basis, FGLM, HilbertDimension, HilbertPolynomial, HilbertSeries, Homogenize, InitialForm, InterReduce, IsProper, IsZeroDimensional, LeadingCoefficient, LeadingMonomial, LeadingTerm, MatrixOrder, MaximalIndependentSet, MonomialOrder, MultiplicationMatrix, MultivariateCyclicVector, NormalForm, NormalSet,

RationalUnivariateRepresentation, Reduce, RememberBasis,SPolynomial,Solve,SuggestVariableOrder, TestOrder, ToricIdealBasis.TrailingTerm, UnivariatePolynomial, Walk, WeightedDegreel

- all solutions, sometimes a complete analytic description of a workspace.
- Singularities can be treated, pathologic cases (selfmotion) can be detected and degree of freedom computation (Hilbert dimension) can be performed

Manfred L. Hu Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Implicitization Algorithm

Back to the parametric equations!

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Implicitization Algorithm

Back to the parametric equations!

Half tangent substitution transforms the rotation angles u_i into algebraic parameters t_i and one ends up with eight parametric equations of the form:

$$x_0 = f_0(t_1, \dots t_n),$$

 $x_1 = f_1(t_1, \dots t_n),$
 \vdots
 $y_3 = f_8(t_1, \dots t_n).$ (32)

- Equations will be rational having a denominator of the form $(1+t_1^2)\cdot\ldots\cdot(1+t_n^2)$ which can be canceled because the Study parameters x_i, y_i are homogeneous.
- The same can be done with a possibly appearing common factor of all parametric expressions.

Manfred L. Husty Hans-Peter

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Implicitization Algorithm

 there exists a one-to-one correspondence from all spatial transformations to the Study quadric

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

- there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t_1, \ldots, t_n

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

- there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters t_1, \ldots, t_n
 - → kinematic mapping a set of corresponding points in P⁷

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

Algebraic Geomet and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

- there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by *n* parameters $t_1, ..., t_n$
 - → kinematic mapping a set of corresponding points in P⁷
 - **a** ask now for the smallest variety $\mathscr{V} \in P^7$ (with respect to inclusion) which contains all these points

Kinematics and

Algebraic Geometry

Manfred L. Husty,

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

- there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters $t_1, ..., t_n$
 - → kinematic mapping a set of corresponding points in P⁷
 - **a** ask now for the smallest variety $\mathscr{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?

Kinematics and Algebraic Geometry Manfred L. Husty,

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

- there exists a one-to-one correspondence from all spatial transformations to the Study quadric
- transformation parametrized by n parameters $t_1, ..., t_n$
 - → kinematic mapping a set of corresponding points in P⁷
 - **a** ask now for the smallest variety $\mathscr{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal $\mathscr V$ consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S^2_6 .

Kinematics and Algebraic Geometry Manfred L. Husty,

Schröcker

Introduction
Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of

mechanisms

 there exists a one-to-one correspondence from all spatial transformations to the Study quadric

- transformation parametrized by n parameters t_1, \ldots, t_n
 - → kinematic mapping a set of corresponding points in P⁷
 - **a** ask now for the smallest variety $\mathscr{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal \mathscr{V} consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .
- the minimum number of polynomials to describe \(\psi\) corresponds to the degrees of freedom (dof) of the kinematic chain

Kinematics and Algebraic Geometry Manfred L. Husty,

Schröcker

Introduction
Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of

mechanisms

 there exists a one-to-one correspondence from all spatial transformations to the Study quadric

- transformation parametrized by n parameters $t_1, ..., t_n$
 - → kinematic mapping a set of corresponding points in P⁷
 - \blacksquare ask now for the smallest variety $\mathscr{V} \in P^7$ (with respect to inclusion) which contains all these points
- What do we know about this variety?
- Its ideal \mathscr{V} consists of homogeneous polynomials and contains $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3$, i.e. the equation for the Study quadric S_6^2 .
- the minimum number of polynomials to describe \(\mathcal{V} \) corresponds to the degrees of freedom (dof) of the kinematic chain
- If the number of generic parameters is n then m = 6 n polynomials are necessary to describe \mathscr{V}

Manfred L. Hus Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Implicitization Algorithm

General observation: the parametric equations of a geometric object have to fulfill the implicit equations

Manfred L. Hu Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Implicitization Algorithm

General observation: the parametric equations of a geometric object have to fulfill the implicit equations

$$p = \sum_{\alpha,\beta} C_k x_i^{\alpha} y_j^{\beta}$$

Manfred L. Hu Hans-Pete Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Implicitization Algorithm

General observation: the parametric equations of a geometric object have to fulfill the implicit equations

■ Make a general ansatz of a polynomial of degree *n*:

$$p = \sum_{\alpha,\beta} C_k x_i^{\alpha} y_j^{\beta}$$

substitute the parametric equations into p

Kinematics and Algebraic Geometry

Manfred L. Hu Hans-Pete Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry
and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

General observation: the parametric equations of a geometric object have to fulfill the implicit equations

$$p = \sum_{\alpha,\beta} C_k x_i^{\alpha} y_j^{\beta}$$

- substitute the parametric equations into p
 - \blacksquare resulting expression is a polynomial f in t_i

Manfred L. Hu Hans-Pete Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Implicitization Algorithm

General observation: the parametric equations of a geometric object have to fulfill the implicit equations

$$p = \sum_{\alpha,\beta} C_k x_i^{\alpha} y_j^{\beta}$$

- substitute the parametric equations into p
 - \blacksquare resulting expression is a polynomial f in t_i
 - \blacksquare f has to vanish for all $t_i \rightarrow$

Manfred L. H Hans-Pete Schröcke

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Implicitization Algorithm

General observation: the parametric equations of a geometric object have to fulfill the implicit equations

$$p = \sum_{\alpha,\beta} C_k x_i^{\alpha} y_j^{\beta}$$

- substitute the parametric equations into p
 - \blacksquare resulting expression is a polynomial f in t_i
 - **I** f has to vanish for all $t_i \rightarrow$
 - \blacksquare all coefficients have to vanish \rightarrow

Hans-Pete Schröcke

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Implicitization Algorithm

General observation: the parametric equations of a geometric object have to fulfill the implicit equations

$$p = \sum_{\alpha,\beta} C_k x_i^{\alpha} y_j^{\beta}$$

- substitute the parametric equations into p
 - resulting expression is a polynomial f in t_i
 - **I** f has to vanish for all $t_i \rightarrow$
 - all coefficients have to vanish →
 - lacktriangleright collect with respect to the powerproducts of the t_i and extract their coefficients o

Manfred L. Husty, Hans-Peter

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Implicitization Algorithm

General observation: the parametric equations of a geometric object have to fulfill the implicit equations

$$p = \sum_{\alpha,\beta} C_k x_i^{\alpha} y_j^{\beta}$$

- substitute the parametric equations into p
 - resulting expression is a polynomial f in t_i
 - **I** f has to vanish for all $t_i \rightarrow$
 - all coefficients have to vanish →
 - lacktriangleright collect with respect to the powerproducts of the t_i and extract their coefficients o
 - system of linear equations in the $\binom{n+7}{n}$ coefficients C_k

Kinematics and Algebraic Geometry Manfred L. Husty,

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of mechanisms General observation: the parametric equations of a geometric object have to fulfill the implicit equations

$$p = \sum_{\alpha,\beta} C_k x_i^{\alpha} y_j^{\beta}$$

- substitute the parametric equations into p
 - resulting expression is a polynomial f in t_i
 - **I** f has to vanish for all $t_i \rightarrow$
 - all coefficients have to vanish →
 - lacktriangleright collect with respect to the powerproducts of the t_i and extract their coefficients o
 - system of linear equations in the $\binom{n+7}{n}$ coefficients C_k
- \blacksquare determine C_k

Kinematics and Algebraic Geometry

Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

General observation: the parametric equations of a geometric object have to fulfill the implicit equations

Make a general ansatz of a polynomial of degree n:

$$p = \sum_{\alpha,\beta} C_k x_i^{\alpha} y_j^{\beta}$$

- substitute the parametric equations into p
 - resulting expression is a polynomial f in t_i
 - **I** f has to vanish for all $t_i \rightarrow$
 - all coefficients have to vanish →
 - lacktriangleright collect with respect to the powerproducts of the t_i and extract their coefficients o
 - system of linear equations in the $\binom{n+7}{n}$ coefficients C_k
- \blacksquare determine C_k
- possibly increase the degree of the ansatz polynomial

Hans-Peter Schröcker

Introduction

Kinematic mapping
Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Remarks:

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Remarks:

■ The number of equations depends on the particular design of the chain

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

and Kinematics

Methods to establish the sets of equations – the

canonical equations

Constraint
equations and

mechanism freedom

Parallel Manipulator

Synthesis of mechanisms

Remarks:

- The number of equations depends on the particular design of the chain
- in general the system will consist of more equations than unknowns because in general there are more powerproducts than unknowns C_i

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

and Kinematics

Methods to

establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms

Remarks:

- The number of equations depends on the particular design of the chain
- in general the system will consist of more equations than unknowns because in general there are more powerproducts than unknowns C_i
- system is highly overconstrained

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of mechanisms

Remarks:

- The number of equations depends on the particular design of the chain
- in general the system will consist of more equations than unknowns because in general there are more powerproducts than unknowns C_i
- system is highly overconstrained
- equations have to be dependent, at least if the degree of the ansatz polynomial is increased, because the constraint variety will have some algebraic degree.

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry
and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of mechanisms

Remarks:

- The number of equations depends on the particular design of the chain
- in general the system will consist of more equations than unknowns because in general there are more powerproducts than unknowns C_i
- system is highly overconstrained
- equations have to be dependent, at least if the degree of the ansatz polynomial is increased, because the constraint variety will have some algebraic degree.
- if these systems can be solved depends how complicated the chain is (we have solved up to degree 8)

Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of mechanisms

Remarks:

- The number of equations depends on the particular design of the chain
- in general the system will consist of more equations than unknowns because in general there are more powerproducts than unknowns C_i
- system is highly overconstrained
- equations have to be dependent, at least if the degree of the ansatz polynomial is increased, because the constraint variety will have some algebraic degree.
- if these systems can be solved depends how complicated the chain is (we have solved up to degree 8)
- in a step of the algorithm polynomials could be created that are contained in the ideal of polynomials created in steps before. Test and reduce w.r.t. a Grö bner basis

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry
and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of mechanisms

Remarks:

- The number of equations depends on the particular design of the chain
- in general the system will consist of more equations than unknowns because in general there are more powerproducts than unknowns C_i
- system is highly overconstrained
- equations have to be dependent, at least if the degree of the ansatz polynomial is increased, because the constraint variety will have some algebraic degree.
- if these systems can be solved depends how complicated the chain is (we have solved up to degree 8)
- in a step of the algorithm polynomials could be created that are contained in the ideal of polynomials created in steps before. Test and reduce w.r.t. a Grö bner basis
- the algorithm could create more polynomials than needed; take out of the set the number needed (simplest!)

Kinematics and Algebraic Geometry Manfred L. Husty,

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of

equations – the canonical equations

equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Constraint equations and mechanism freedom

Definition

The degree of freedom of a mechanical system is the Hilbert dimension of the ideal generated by the constraint polynomials, the Study quadric and a normalizing condition

Constraint equations and mechanism freedom

Algebraic Geometry

Manfred L. Husty,

Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Definition

The degree of freedom of a mechanical system is the Hilbert dimension of the ideal generated by the constraint polynomials, the Study quadric and a normalizing condition

Example: Self motions of Stewart Platforms

```
> with(Groebner):
```

```
> \mathbf{F} := [\mathbf{U4}, \mathbf{U2}, \mathbf{U3}, \mathbf{U8}, \mathbf{U10}, \mathbf{U7}, \mathbf{h1}, \mathbf{x0}^2 + \mathbf{x1}^2 + \mathbf{x2}^2 + \mathbf{x3}^2 - 1];
F := [244x_1y_0 - 792x_3y_2 - 244x_0y_1 + 1370y_3x_1 - 1370x_3y_1 + 422x_0y_2 + 439323x_2^2 + 1465x_3^2 + 999x_0^2 - 436859x_1^2 + 792x_2y_3 - 422x_2y_0 - 544796x_0x_5 + 505072x_2x_1, -101x_1y_0 - 156x_3y_2 + 101x_0y_1 + 156x_2y_3 + 68081x_0x_3 - 101796x_2x_1 - \frac{4401}{4}x_1^2 - \frac{4401}{4}x_2^2 - \frac{4401}{4}x_0^2 - 61x_1y_0 + 198x_3y_2 + 61x_0y_1 - 198x_2y_3 - 680203x_0x_3 - 126565x_2x_1 - \frac{6713}{2}x_1^2 - \frac{6713}{2}x_2^2 - \frac{6713}{2}x_2^2 - \frac{6713}{2}x_3^2 - 204402x_0x_3 - 297x_2x_1 - \frac{3749}{2}x_1^2 - \frac{3749}{2}x_1^2 - \frac{6713}{2}x_2^2 - \frac{6713
```

HilbertDimension(F,tdeg(x0,x1,x2,x3,y0,y1,y2,y3));

Griffis-Duffy platform

Kinematics and Algebraic Geometry

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping
Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

mechanism f The TSAI-UF

Synthesis of mechanisms

y Z₀ y₀

Griffis-Duffy platform

Algebraic Geometry

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

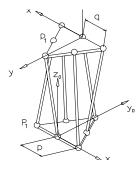
Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of mechanisms



- > with(Groebner):
- $\geq \quad \texttt{G:=[U2,U3,U4,U5,h1,U7,x0^2+x1^2+x2^2+x3^2-1];}$

$$\begin{split} G \coloneqq & [-4x_2y_3 + 12x_1y_0 + 4y_2x_3 + 4\sqrt{3}x_1x_2.8\sqrt{3}x_2y_0, -4x_2y_3 - 12x_1y_0 + 4y_2x_3 + 4\sqrt{3}x_1x_2, -\frac{2}{3}\sqrt{3}(\sqrt{3}x_2y_3 - 3\sqrt{3}x_1y_0 - \sqrt{3}y_2x_3 + \sqrt{3}x_2^2 + \sqrt{3}x_3^2 - 3x_1x_2 + 3x_2y_0 - 3y_3x_1 + 3x_3y_1).4\sqrt{3}y_0(\sqrt{3}x_1 + x_2).4y_0^2 + 4y_1^2 + 4y_3^2 + 4y_2^2 + x_3^2(2-R) + x_1^2(2-R) + x_2^2(2-R) + 2\sqrt{3}x_2y_1 + 6x_1y_0 + 2y_2x_3 + 2\sqrt{3}x_2y_0 - 2x_2y_3 - 2\sqrt{3}y_3x_1 + x_1^2 - x_3^2 + 2\sqrt{3}x_1x_2 - x_2^2 \cdot x_1y_1 + x_2y_2 + x_3y_3, -1 + x_1^2 + x_2^2 + x_3^2] \end{split}$$

HilbertDimension(F,tdeg(x1,x2,x3,y0,y1,y2,y3));

Schatz Mechanism - Bricard's overconstrained 6R chain

Kinematics and Algebraic Geometry Manfred L. Husty,

Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Turbula T2F Heavy-Duty Shaker-Mixer (Willy A. Bachofen AG, http://www.wab.ch/ie/e/turbula1.htm

The DH parameters of Bricard's orthogonal chain

i	a _i	dį	α_i
1	a ₁	0	π/2
2	a	0	π/2
3	a ₂ a ₃	0	π/2
4	a ₄	0	π/2
5	a ₄ a ₅ a ₆	0	π/2
6	a ₆	0	$\pm \pi/2$

Table: DH parameters of Bricard's orthogonal chain

with the additional condition that $a_1^2 - a_2^2 + a_3^2 - a_4^2 + a_5^2 - a_6^2 = 0$.

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Schatz Mechanism - Bricard's overconstrained 6R chain

 $F := [-2z_0 + z_1 + z_2v_1 - 2z_3v_1 - 2s_1 - 2s_2v_1, -z_0 + 2z_1 + 2z_2v_1 - z_3v_1 - 2s_0 - 2s_3v_1, -z_1v_1 + z_2 - 2s_1v_1 + 2s_2 - z_0v_1 + z_3 + 2s_0v_1 - 2s_3z_0v_6q + z_1 + 2z_1v_6q - z_2 + 2z_2v_6q + z_3v_6q - 2s_0v_6q - 2s_1 + 2s_2 - 2s_3v_6q, -z_0 + 2z_0v_6q + z_1v_6q + z_2v_6q + z_3 + 2z_3v_6q - 2s_0 + 2s_1v_6q + 2s_2v_6q + 2s_3, z_0 + 2z_0v_6q - z_1v_6q + z_2v_6q + z_3 - 2z_3v_6q + 2s_0 - 2s_1v_6q + 2s_2v_6q + 2s_3, -z_0v_6q - z_1 + 2z_1v_6q - z_2 - 2z_2v_6q + 2s_3v_6q + 2s_0v_6q + 2s_1 + 2s_2 - 2s_3v_6q, s_0z_0 + s_1z_1 + s_2z_2 + s_3z_3, z_0^2 + z_1^2 + z_2^2 + z_3^2 - 1$

> HilbertDimension(F);

•

Kinematics and

Algebraic Geometry

Manfred L. Hustv.

Manfred L. Hust Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of

mechanisms

Schatz Mechanism - Bricard's overconstrained 6R chain

 $F := \begin{bmatrix} -2z_0 + z_1 + z_2 v_1 - 2z_0 v_1 - 2s_1 - 2s_2 v_1 - z_0 + 2z_1 + 2z_2 v_1 - z_3 v_1 - 2s_0 - 2s_3 v_1, -z_1 v_1 + z_2 - 2s_1 v_1 + 2s_2 - 2s_2 v_1 - z_3 v_2 v_2 + z_3 v_0 - 2s_1 v_2 - 2s_2 v_0 v_1 - 2s_1 v_2 v_0 - 2s_1 v_$

> HilbertDimension(F);

1

> Basis(F,tdeg[z0,z1,z2,z3,s0,s1,s2,s2,v6q,v1]);

$$\begin{split} F := [z_2 - z_1 - z_0 + z_3, 2s_1 - 2s_0 + z_1 + z_0, 2s_2 + 2s_0 - z_1 + z_3, 2s_3 + 2s_0 - 2z_1 - z_0 + z_3, 2s_0 z_0 - 2s_0 z_3 + 2z_1 z_3 + z_0 z_3 - z_3^2, z_0 v_1 - z_3 v_1 - 2s_0 + 2z_1 - z_3, 2z_1^2 - 1 + 2z_1 z_0 + 2z_0^2 - 2z_1 z_3 - 2z_0 z_3 + 2z_3^2, z_1 v_{6q} + z_0 v_{6q} - 2s_0 + z_1, 4s_0^2 - 4s_0 z_1 - z_0^2 + 2z_1 z_3 + 2z_0 z_3 - 2z_3^2, 2s_0 v_1 - z_3 v_1 - z_0 + z_3, 2s_0 v_{6q} - z_0 v_{6q} + 2z_3 v_{6q} - 2s_0 - z_0, 8v_{6q} z_3^2 - 2 - 4v_1 z_3^2 + v_{6q} v_1 + 12s_0 z_1 + 2z_1 z_0 + 2z_0^2 - 12s_0 z_3 - 10z_0 z_3 + 6z_3^2 - 4v_{6q} + v_1, 8v_{6q} z_0 z_3 - 1 + 4s_0 z_1 + 2z_1 z_0 - 12s_0 z_3 + 8z_1 z_3 + 2z_0 z_3 - v_{6q}, 2v_1 z_1 z_3 + z_0^2 + 4s_0 z_3 - 4z_1 z_3 - 2z_0 z_3 + 3z_3^2, v_{6q} v_1 z_3 - z_0 v_{6q} - z_3 v_1 - z_0, z_0^3 + 4s_0 z_1 z_3 + z_0^2 z_3 - 2z_1 z_3^2 - z_0 z_3^2 + 3z_3^2, v_{6q} v_1 z_3 - 2v_0 z_3 + 2z_0^2 z_3 + 2z_0^2 z_3 + 2z_0^2 z_3 - 2z_1 z_0^2 z_3 - 2z_1 z_0^2 z_3 + 2z_0^2 z_3 - 2z_1 z_0^2 z_3$$

Schatz Mechanism - Bricard's overconstrained 6R chain

Kinematics and Algebraic Geometry

Manfred L. Hust Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

$$\begin{split} F := & \left[-2z_0 + z_1 + z_2 v_1 - 2z_3 v_1 - 2s_1 - 2s_2 v_1 - z_0 + 2z_1 + 2z_2 v_1 - z_0 v_1 - 2s_0 - 2s_2 v_1 - z_1 v_1 + z_2 - 2s_1 v_1 + 2s_2 z_2 v_2 - z_0 v_1 + z_3 + 2s_0 v_1 - 2s_1 z_0 v_0 + z_1 + 2z_1 v_0 - z_2 + 2z_2 v_0 + z_3 v_0 - 2s_0 v_0 - 2s_1 + 2s_2 - 2s_3 v_0 - z_0 + 2s_0 v_0 - 2s_1 v_0 + z_0 v$$

> HilbertDimension(F);

1

> Basis(F,tdeg[z0,z1,z2,z3,s0,s1,s2,s2,v6q,v1]);

 $F := [z_2 - z_1 - z_0 + z_3, 2s_1 - 2s_0 + z_1 + z_0, 2s_2 + 2s_0 - z_1 + z_3, 2s_3 + 2s_0 - 2z_1 - z_0 + z_3, 2s_0 z_0 - 2s_0 z_3 + 2z_1 z_3 + z_0 z_3 - z_3^2, z_0 v_1 - z_3 v_1 - 2s_0 + 2z_1 - z_3, 2z_1^2 - 1 + 2z_1 z_0 + 2z_0^2 - 2z_1 z_3 - 2z_0 z_3 + 2z_3^2, z_1 v_{6q} + z_0 v_{6q} - 2s_0 + z_1, 4s_0^2 - 4s_0 z_1 - z_0^2 + 2z_1 z_3 + 2z_0 z_3 - 2z_3^2, 2s_0 v_1 - z_3 v_1 - z_0 + z_3, 2s_0 v_{6q} - z_0 v_{6q} + 2z_3 v_{6q} - 2s_0 - z_0, 8v_{6q} z_3^2 - 2 - 4v_1 z_3^2 + v_{6q} v_1 + 12s_0 z_1 + 2z_1 z_0 + 2z_0^2 - 12s_0 z_3 - 10z_0 z_3 + 6z_3^2 - 4v_{6q} + v_1, 8v_{6q} z_0 z_3 - 1 + 4s_0 z_1 + 2z_1 z_0 - 12s_0 z_3 + 8z_1 z_3 + 2z_0 z_3 - v_{6q}, 2v_1 z_1 z_3 + z_0^2 + 4s_0 z_3 - 4z_1 z_3 - 2z_0 z_3 + 3z_3^2, v_{6q} v_1 z_3 - z_0 v_{6q} - z_3 v_1 - z_0, z_0^2 + 4s_0 z_1 z_3 + z_0^2 z_3 - 2z_1 z_3^2 - z_0 z_3^2 + 3z_3^2 - 2z_3, 8v_{6q} z_0^2 - 2 + 4v_1 z_3^2 - v_{6q} v_1 + 4s_0 z_1 + 6z_1 z_0 + 6z_0^2 - 4s_0 z_3 + 2z_0 z_3 + 2z_3^2 - v_1, 2v_1 z_3^3 - z_1 z_0^2 - 2z_1 z_0 z_3 + 4s_0 z_1^2 - 2z_1 z_0 z_3 + 2z_0^2 z_3 - 2z_1 z_0^2 - 2z_1 z_0 z_3 + 2z_0^2 z_3 - 2z_1 z_0^2 - 2z_1 z_0 z_3 + 2z_0^2 z_0 z_0^2 - 2z_1 z_0 z_0^2 + 2z_0^2 z_0 z_0^2 - 2z_1 z_0 z_0^2 + 2z_0^2 z_0 z_0^2 - 2z_1 z_0^2 z_0 z_0^2 - 2z_0^2 z_0 z_0^2 - 2z_0^2 z_0^2 z_0^2 - 2z_0^2 z_0^2 z_0^2 z_0^2 z_0^2 - 2z_0^2 z_0^2 z_0$

M. Pfurner, PhD thesis, Innsbruck, 2007

http://repository.uibk.ac.at/viewer.alo?viewmode=overview&objid=1015078&page=

The TSAI-UPU Parallel Manipulator

Algebraic Geometry

Schröcker Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

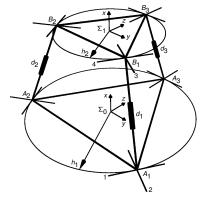
mechanism freedor

Parallel Manipulator
Solving the system of
equations
Operation modes
Singular poses

Changing operation modes

Synthesis of

Synthesis of mechanisms



difference to the SNU-3UPU manipulator: legs are rotated by 90 degrees before assembly

Hans-Pet Schröcke

Introduction
Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSALLIDIA

Parallel Manipulator
Solving the system of
equations
Operation modes

Singular poses
Changing operation modes

Synthesis of mechanisms

The algebraic constraint equations

$$g_1: x_0 y_0 + x_1 y_1 + x_2 y_2 + x_3 y_3 = 0$$

$$g_2: (h_1 - h_2) x_0 x_2 + (h_1 + h_2) x_1 x_3 - x_2 y_3 - x_3 y_2 = 0$$

$$g_3: (h_1 - h_2) x_0 x_3 - (h_1 + h_2) x_1 x_2 - 4 x_1 y_1 - 3 x_2 y_2 - x_3 y_3 = 0$$

$$g_4: \left(h_1-h_2\right) x_0 \, x_3 - \left(h_1+h_2\right) x_1 \, x_2 + 2 \, x_1 \, y_1 + 2 \, x_3 \, y_3 = 0$$

$$\begin{split} g_5: &(h_1^2 - 2h_1 \, h_2 + h_2^2 - a_1^2) \, x_0^2 + 2\sqrt{3} \, (h_1 - h_2) \, x_0 \, y_2 - 2(h_1 - h_2) \, x_0 \, y_3 + (h_1^2 + 2h_1 \, h_2 + h_2^2 - a_1^2) \, x_1^2 - \\ &- 2(h_1 + h_2) \, x_1 \, y_2 - 2\sqrt{3} \, (h_1 + h_2) \, x_1 \, y_3 + (h_1^2 - h_1 \, h_2 + h_2^2 - a_1^2) \, x_2^2 + 2\sqrt{3} \, h_1 \, h_2 \, x_2 \, x_3 - \\ &- 2\sqrt{3} \, (h_1 - h_2) \, x_2 \, y_0 + 2(h_1 + h_2) \, x_2 \, y_1 + (h_1^2 + h_1 \, h_2 + h_2^2 - a_1^2) \, x_3^2 + 2(h_1 - h_2) \, x_3 \, y_0 + \\ &+ 2\sqrt{3} \, (h_1 + h_2) \, x_3 \, y_1 + 4(y_1^2 + y_1^2 + y_2^2 + y_2^2) = 0 \end{split}$$

$$\begin{split} g_6: &(h_1^2-2h_1\,h_2+h_2^2-a_2^2)x_0^2-2\sqrt{3}\,(h_1-h_2)\,x_0\,y_2-2(h_1-h_2)\,x_0\,y_3+(h_1^2+2\,h_1\,h_2+h_2^2-a_2^2)\,x_1^2-\\ &-2(h_1+h_2)\,x_1\,y_2+2\sqrt{3}\,(h_1+h_2)\,x_1\,y_3++(h_1^2-h_1\,h_2+h_2^2-a_2^2)\,x_2^2-2\sqrt{3}\,h_1\,h_2\,x_2\,x_3+\\ &+2\sqrt{3}\,(h_1-h_2)\,x_2\,y_0+2(h_1+h_2)\,x_2\,y_1++(h_1^2+h_1\,h_2+h_2^2-a_2^2)\,x_3^2+2(h_1-h_2)\,x_3\,y_0-\\ &-2\sqrt{3}\,(h_1+h_2)\,x_3\,y_1+4\,(y_0^2+y_1^2+y_2^2+y_3^2)=0 \end{split}$$

$$\begin{split} g_7: &(h_1^2-2h_1\,h_2+h_2^2-a_3^2)\,x_0^2+4(h_1-h_2)\,x_0\,y_3+(h_1^2+2h_1\,h_2+h_2^2-a_3^2)\,x_1^2+4(h_1+h_2)\,x_1\,y_2+\\ &+(h_1^2+2h_1\,h_2+h_2^2-a_3^2)\,x_2^2-4(h_1+h_2)\,x_2\,y_1+(h_1^2-2h_1\,h_2+h_2^2-a_3^2)\,x_3^2-4(h_1-h_2)\,x_3\,y_0+\\ &+4(v_0^2+y_1^2+y_2^2+y_3^2)=0 \end{split}$$

normalization equation is added:

$$g_8: x_0^2 + x_1^2 + x_2^2 + x_2^2 - 1 = 0$$

(33)

Manfred L. Hu Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU

Parallel Manipulator
Solving the system of

Operation modes Singular poses

Singular poses
Changing operation modes

Synthesis of mechanisms

Solving the system of equations

■ polynomial ideal over the ring $\mathbb{R}[h_1, h_2, d_1, d_2, d_3][x_0, x_1, x_2, x_3, y_0, y_1, y_2, y_3]$

$$\mathscr{I} = \langle g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8 \rangle$$

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator
Solving the system of

Operation modes
Singular poses
Changing operation

modes
Synthesis of mechanisms

Solving the system of equations

■ polynomial ideal over the ring $\mathbb{R}[h_1, h_2, d_1, d_2, d_3][x_0, x_1, x_2, x_3, y_0, y_1, y_2, y_3]$

$$\mathscr{I} = \langle g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8 \rangle$$

primary decomposition

$$\langle g_1, g_2, g_3, g_4 \rangle = \bigcap_{i=1}^6 \mathscr{J}_i$$

$$\begin{split} \mathscr{J}_1 &= \langle y_0, x_1, x_2, x_3 \rangle, \ \mathscr{J}_2 &= \langle x_0, y_1, x_2, x_3 \rangle, \ \mathscr{J}_3 &= \langle y_0, y_1, x_2, x_3 \rangle, \ \mathscr{J}_4 &= \langle x_0, x_1, y_2, y_3 \rangle, \\ \mathscr{J}_5 &= \langle (h_1 - h_2) \, x_0 \, x_2 + (h_1 + h_2) \, x_1 \, x_3 - x_2 \, y_3 - x_3 \, y_2, \\ (h_1 - h_2) \, x_0 \, x_3 - (h_1 + h_2) \, x_1 \, x_2 - x_2 \, y_2 + x_3 \, y_3, \\ 2 \, x_1 \, y_1 + x_2 \, y_2 + x_3 \, y_3, x_0 \, y_0 - x_1 \, y_1, (h_1 - h_2)^2 \, x_0^2 + (h_1 + h_2)^2 \, x_1^2 - y_2^2 - y_3^2, \\ (h_1 + h_2) \, x_2^3 \, y_0 - 3 \, (h_1 - h_2) \, x_2^2 \, x_3 \, y_1 - 2 \, x_2^2 \, y_0 \, y_1 - \\ -3 \, (h_1 - h_2) \, x_2 \, x_3^2 \, y_0 + (h_1 - h_2) \, x_3^3 \, y_1 - 2 \, x_3^2 \, y_0 \, y_1 \rangle \\ \mathscr{J}_6 &= \langle x_0, x_1, x_2, x_3 \rangle. \end{split}$$

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Solving the system of

Operation modes Singular poses Changing operation

modes
Synthesis of mechanisms

Solving the system of equations

■ polynomial ideal over the ring $\mathbb{R}[h_1, h_2, d_1, d_2, d_3][x_0, x_1, x_2, x_3, y_0, y_1, y_2, y_3]$

$$\mathscr{I} = \langle g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8 \rangle$$

primary decomposition

$$\langle g_1, g_2, g_3, g_4 \rangle = \bigcap_{i=1}^6 \mathscr{J}_i$$

$$\begin{split} \mathscr{J}_1 &= \langle y_0, x_1, x_2, x_3 \rangle, \ \mathscr{J}_2 &= \langle x_0, y_1, x_2, x_3 \rangle, \ \mathscr{J}_3 &= \langle y_0, y_1, x_2, x_3 \rangle, \ \mathscr{J}_4 &= \langle x_0, x_1, y_2, y_3 \rangle, \\ \mathscr{J}_5 &= \langle (h_1 - h_2) \, x_0 \, x_2 + (h_1 + h_2) \, x_1 \, x_3 - x_2 \, y_3 - x_3 \, y_2, \\ (h_1 - h_2) \, x_0 \, x_3 - (h_1 + h_2) \, x_1 \, x_2 - x_2 \, y_2 + x_3 \, y_3, \\ 2 \, x_1 \, y_1 + x_2 \, y_2 + x_3 \, y_3, x_0 \, y_0 - x_1 \, y_1, (h_1 - h_2)^2 \, x_0^2 + (h_1 + h_2)^2 \, x_1^2 - y_2^2 - y_3^2, \\ (h_1 + h_2) \, x_2^3 \, y_0 - 3 \, (h_1 - h_2) \, x_2^2 \, x_3 \, y_1 - 2 \, x_2^2 \, y_0 \, y_1 - \\ -3 \, (h_1 - h_2) \, x_2 \, x_3^2 \, y_0 + (h_1 - h_2) \, x_3^3 \, y_1 - 2 \, x_3^2 \, y_0 \, y_1 \rangle \\ \mathscr{J}_6 &= \langle x_0, x_1, x_2, x_3 \rangle. \end{split}$$

 \blacksquare decomposition of the vanishing set of \mathscr{I}

$$\mathscr{V}(\mathscr{I}) = \bigcup_{i=1}^{5} \mathscr{V}(\mathscr{J}_{i} \cup \langle g_{5}, g_{6}, g_{7}, g_{8} \rangle) = \bigcup_{i=1}^{5} \mathscr{V}(\mathscr{K}_{i})$$

Solving the system of equations

Kinematics and Algebraic Geometry Manfred L. Husty, Hans-Peter

Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of

equations – the canonical equations

equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Solving the system of equations

Operation modes Singular poses Changing operation modes

Synthesis of mechanisms

■ solutions for generic parameters h_1, h_2 and d_1, d_2, d_3 :

$$|\mathscr{V}(\mathscr{K}_1)| = |\mathscr{V}(\mathscr{K}_2)| = 2, |\mathscr{V}(\mathscr{K}_3)| = 4,$$

$$|\mathscr{V}(\mathscr{K}_4)|=6, |\mathscr{V}(\mathscr{K}_5)|=64.$$

Solving the system of equations

Kinematics and Algebraic Geometry Manfred L. Husty.

Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the

canonical equations

equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

equations
Operation modes

Singular poses
Changing operation modes

Synthesis of mechanisms

■ solutions for generic parameters h_1, h_2 and d_1, d_2, d_3 :

$$|\mathscr{V}(\mathscr{K}_1)| = |\mathscr{V}(\mathscr{K}_2)| = 2, |\mathscr{V}(\mathscr{K}_3)| = 4,$$

$$|\mathscr{V}(\mathscr{K}_4)| = 6, |\mathscr{V}(\mathscr{K}_5)| = 64.$$

• solutions for parameters with $d_1 = d_2 = d_3$:

$$|\mathscr{V}(\mathscr{K}_1)| = |\mathscr{V}(\mathscr{K}_2)| = |\mathscr{V}(\mathscr{K}_3)| = 2,$$

$$|\mathcal{V}(\mathcal{K}_4)| = 6, |\mathcal{V}(\mathcal{K}_5)| = 60$$

Solving the system of equations

Kinematics and Algebraic Geometry Manfred L. Husty,

Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the

canonical equations
Constraint

equations and mechanism freedom
The TSALUPU

Parallel Manipulator
Solving the system of

Operation modes
Singular poses
Changing operation
modes

Synthesis of mechanisms

■ solutions for generic parameters h_1, h_2 and d_1, d_2, d_3 :

$$|\mathcal{V}(\mathcal{K}_1)| = |\mathcal{V}(\mathcal{K}_2)| = 2, |\mathcal{V}(\mathcal{K}_3)| = 4,$$

$$|\mathscr{V}(\mathscr{K}_4)| = 6, |\mathscr{V}(\mathscr{K}_5)| = 64.$$

• solutions for parameters with $d_1 = d_2 = d_3$:

$$|\mathscr{V}(\mathscr{K}_1)| = |\mathscr{V}(\mathscr{K}_2)| = |\mathscr{V}(\mathscr{K}_3)| = 2,$$

$$|\mathscr{V}(\mathscr{K}_4)|=6, |\mathscr{V}(\mathscr{K}_5)|=60$$

■ "home pose" is solution of multiplicity 1 (SNU-3UPU → multiplicity 4)

Operation modes

Kinematics and Algebraic Geometry

Introduction

Kinematic mapping Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations - the

canonical equations Constraint equations and

mechanism freedom The TSALUPU

Parallel Manipulator Solving the system of equations

Singular poses Changing operation modes

Synthesis of mechanisms ■ partial system $\mathscr{J}_i \cup \langle g_5, g_6, g_7 g_8 \rangle \longleftrightarrow$ operation mode

five different modes:

- translational mode, $\mathcal{J}_1 = \langle y_0, x_1, x_2, x_3 \rangle$

- twisted translational mode, $\mathcal{J}_2 = \langle x_0, y_1, x_2, x_3 \rangle$

- planar mode, $\mathscr{J}_3 = \langle y_0, y_1, x_2, x_3 \rangle$

- upside-down planar mode, $\mathcal{J}_4 = \langle x_0, x_1, y_2, y_3 \rangle$

- general mode, $\mathcal{J}_5 = \langle \dots \rangle$

Transformation matrix for translational mode

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -2\,y_1 & 1 & 0 & 0 \\ -2\,y_2 & 0 & 1 & 0 \\ -2\,y_3 & 0 & 0 & 1 \end{pmatrix}$$

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and

mechanism freedom
The TSAI-UPU

Parallel Manipulator Solving the system of equations

Operation modes

Singular pose

Changing operation modes

Synthesis of mechanisms

Singular poses

lacksquare conditions on h_1, h_2, d_1, d_2, d_3 for singular poses are computable

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Solving the system of equations

Operation modes

Changing operation

modes
Synthesis of mechanisms

Singular poses

- \blacksquare conditions on h_1, h_2, d_1, d_2, d_3 for singular poses are computable
- Example: translational mode

$$d_1^4 + d_2^4 + d_3^4 - d_1^2 d_2^2 - d_1^2 d_3^2 - d_2^2 d_3^2 - d_1(h_1 - h_2)^2 (d_1^2 + d_2^2 + d_3^2) + 9(h_1 - h_2)^4 = 0$$

Singular poses

Algebraic Geometry

Manfred L. Husty,

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator
Solving the system of equations
Operation modes

Singular poses
Changing operation

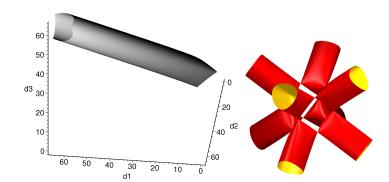
modes
Synthesis of mechanisms

 \blacksquare conditions on h_1, h_2, d_1, d_2, d_3 for singular poses are computable

■ Example: translational mode

$$d_1^4 + d_2^4 + d_3^4 - d_1^2 d_2^2 - d_1^2 d_3^2 - d_2^2 d_3^2 -$$

$$-3(h_1 - h_2)^2 (d_1^2 + d_2^2 + d_3^2) + 9(h_1 - h_2)^4 = 0$$



Singular poses

Kinematics and Algebraic Geometry

Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

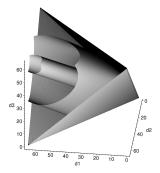
The TSAI-UPU
Parallel Manipulator
Solving the system of

equations
Operation modes

Changing operation

modes
Synthesis of mechanisms

Example: planar mode



$$F_1 F_2 (d_1 + d_2 - d_3) (d_1 + d_3 - d_2) (d_2 + d_3 - d_1) F_3 = 0$$

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and

mechanism freedom
The TSAI-UPU

Parallel Manipulator Solving the system of equations

Operation modes

Singular poses
Changing operation

Synthesis of mechanisms

Changing operation modes

 change of operation mode only at special poses possible

Changing operation modes

Kinematics and Algebraic Geometry

Introduction

Kinematic mapping Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations - the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Solving the system of

equations Operation modes

Singular poses

Synthesis of mechanisms

- change of operation mode only at special poses possible
- dimensions of ideal intersections

	\mathscr{K}_1	\mathscr{K}_2	Ж3	\mathscr{K}_4	\mathscr{K}_{5}
\mathscr{K}_1	3	-1	2	-1	2
\mathscr{K}_2	-1	3	2	-1	2
\mathscr{K}_3	2	2	3	-1	2
\mathscr{K}_4	-1	-1	-1	3	2
\mathscr{K}_{5}	2	2	2	2	3

Algebraic Geometry

Manfred L. Husty, Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geome

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedon

mechanism freedom
The TSAI-UPU

Parallel Manipulator Solving the system of equations

Operation modes Singular poses

Changing operation

Synthesis of mechanisms

Changing operation modes

- mode change poses are also singular poses
- lacksquare conditions on h_1, h_2, d_1, d_2, d_3 for such poses are computable

Changing operation modes

Kinematics and Algebraic Geometry Manfred L. Husty,

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Solving the system of equations Operation modes

Singular poses
Changing operati

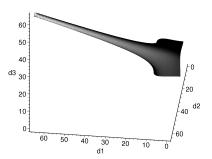
Synthesis of mechanisms

mode change poses are also singular poses

 \blacksquare conditions on h_1, h_2, d_1, d_2, d_3 for such poses are computable

 $\blacksquare \ \, \mathsf{Example:} \ \, \mathsf{translational} \ \, \mathsf{mode} \longleftrightarrow \mathsf{general} \ \, \mathsf{mode}$

$$d_1^4 + d_2^4 + d_3^4 - d_1^2 \, d_2^2 - d_1^2 \, d_3^2 - d_2^2 \, d_3^2 - 36 (h_1 - h_2)^4 = 0$$



$$h_1 = 12, h_2 = 7$$

Changing operation modes

Kinematics and Algebraic Geometry Manfred L. Husty,

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU
Parallel Manipulator
Solving the system of equations
Operation modes

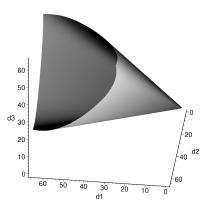
Singular poses

Changing operation

Synthesis of mechanisms

lacksquare Example: planar mode \longleftrightarrow general mode

$$7(d_1^4 + d_2^4 + d_3^4) - 11(d_1^2 d_2^2 - d_1^2 d_3^2 - d_2^2 d_3^2) = 0$$



$$h_1 = 12, h_2 = 7$$

Hans-Per Schröck

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and

mechanism freedom
The TSAI-UPU

Parallel Manipulator Solving the system of equations

Operation modes

Singular poses

Changing operation modes

Synthesis of mechanisms

Most complicated transition are transitions to general mode

Manfred L. Hu Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and

mechanism freedom
The TSAI-UPU

Parallel Manipulator Solving the system of equations Operation modes

Singular poses

Changing operation modes

Synthesis of mechanisms

Most complicated transition are transitions to general mode

Transition surfaces of degree 24

Manfred L. Hus Hans-Peter

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of

mechanisms
Planar Burmeste

Problem
Spherical Four-bar
Synthesis

Synthesis of mechanisms

Changing the point of view the same constraint equations can be used for mechanism synthesis

Manfred L. Hus Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Planar Burmest

Spherical Four-bar Synthesis

Synthesis of mechanisms

Changing the point of view the same constraint equations can be used for mechanism synthesis

- Function synthesis
- Trajectory synthesis
- Motion synthesis

Synthesis of mechanisms

Kinematics and Algebraic Geometry

Manfred L. Hu Hans-Peter Schröcker

Introduction

Quaternions

Algebraic Geometry

Kinematic mapping

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of

mechanisms
Planar Burmeste

Spherical Four-bar Synthesis Changing the point of view the same constraint equations can be used for mechanism synthesis

- Function synthesis
- Trajectory synthesis
- Motion synthesis

Planar Burmester problem:

Given five poses of a planar system, construct a fourbar mechanism whose endeffector passes through all five poses BURMESTER L. (19th century)

It is well known that the solution of this problem yields four dyads that can be combined to six four-bar mechanisms

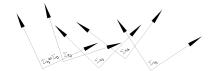


Figure: Five given poses

Algebraic Geometry

Manfred L. Hustv.

Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Planar Burmest

Problem

Spherical Four-bar Synthesis

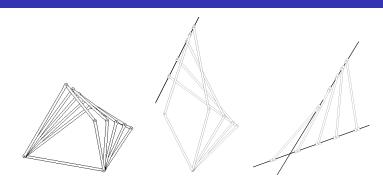


Figure: All possible four-bar mechanisms: a general one, a slider crank and a double slider mechanism

Here the expanded version of the constraint equation has to be used

$$(R^2 - C_1^2 - C_2^2 - C_0(x^2 + y^2) + 2C_1x + 2C_2y)X_0^2 + (R^2 - C_1^2 - C_2^2 - C_0(x^2 + y^2) - 2C_1x - 2C_2y)X_1^2 + ((4C_2x - 4C_1y)X_1 + (4C_0y - 4C_2)X_2 + (-4C_0x + 4C_1)X_3)X_0 + ((4C_1 + 4C_0x)X_2 + (4C_0y + 4C_2)X_3)X_1 - 4C_0X_2^2 - 4C_0X_2^2 = 0.$$

$$(34)$$

 X_i image space coordinates

Ci centers of the fixed pivots

x, y centers of the moving pivots

> Manfred L. Husty, Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Planar Burmester

Spherical Four-bar Synthesis

> Manfred L. Husty, Hans-Peter Schröcker

Introduction

Kinematic mapping
Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Planar Burmester

Spherical Four-bar Synthesis

Algebraic Geometry

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Planar Burmeste

Spherical Four-bar Synthesis

One of those points can be considered to be the point corresponding to the identity

$$(X_0: X_1: X_2: X_3) = (1:0:0:0)$$
(35)

this simplifies the constraint equation

$$(-X_0X_3x + X_0X_2y + X_1X_2x + X_3X_1y - X_2^2 - X_3^2)C_0 - X_0X_2C_2 + X_0X_3C_1 + X_0X_1xC_2 - X_1^2xC_1 + X_1X_2C_1 - X_0X_1yC_1 - X_1^2yC_2 + X_1X_3C_2 = 0$$
(36)

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Planar Burmes

Spherical Four-bar Synthesis Now the four remaining poses are given via their image space coordinates: X_{ij} , j=1...4.

Algebraic Geometry

Manfred L. Hustv.

Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Planar Burmest

Spherical Four-bar Synthesis Now the four remaining poses are given via their image space coordinates: X_{ij} , $j = 1 \dots 4$.

It would be important for the designer to know in advance if among the synthesized mechanisms is a slider crank. This is the case if the following two conditions are fulfilled:

$$\begin{split} E1: & \left(-\frac{X_{13}(-X_{11}^2X_{02}X_{22}+X_{01}X_{21}X_{12}^2-X_{11}X_{31}X_{12}^2+X_{11}^2X_{12}X_{32}^2)}{X_{11}X_{12}(X_{01}X_{12}-X_{11}X_{02})} + X_{23}\right)X_{03} \\ & -\frac{(X_{11}X_{31}X_{02}X_{12}-X_{01}X_{11}X_{12}X_{32}-X_{01}X_{21}X_{02}X_{12}+X_{01}X_{11}X_{02}X_{22})X_{13}^2}{X_{12}X_{11}(X_{01}X_{12}-X_{11}X_{02})} - X_{13}X_{33} = 0 \quad , \quad (37) \end{split}$$

$$E2: \qquad \left(-\frac{X_{14}(-X_{11}^2X_{02}X_{22}+X_{01}X_{21}X_{12}^2-X_{11}X_{31}X_{12}^2+X_{11}^2X_{12}X_{32})}{X_{11}X_{12}(X_{01}X_{12}-X_{11}X_{02})} + X_{24}\right)X_{04} \\ -\frac{(X_{11}X_{31}X_{02}X_{12}-X_{01}X_{11}X_{12}X_{32}-X_{01}X_{21}X_{02}X_{12}+X_{01}X_{11}X_{02}X_{22})X_{14}^2}{X_{12}X_{11}(X_{01}X_{12}-X_{11}X_{02})} - X_{34}X_{14} = 0 \quad . \tag{38}$$

If a double slider is among the synthesized mechanisms then a third (more complicated compatability condition has to be fulfilled

Manfred L. Husty, Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Planar Burmest

Spherical Four-bar Synthesis

Some examples General four-bar mechanism

C_0	1	1
c_1	2	6
C_2	2	1
X	7,3821	9,1605
у	4,2434	1,1070

Table: Design parameter of mechanism 1

	pose 1	pose 2	pose 3	pose 4
а	-0,245005	-0,914683	-2,056744	-3,054058
b	0,523260	1,240571	2,235073	3,179009
φ	0.101061	0.116316	0.072202	-0.013746

Table: Given relative poses

Algebraic Geometry

Manfred L. Husty, Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms

Problem

Spherical Four-bar Synthesis

Some examples General four-bar mechanism

c_0	1	1
c_1	2	6
c_2	2	1
X	7,3821	9,1605
у	4,2434	1,1070

Table: Design parameter of mechanism 1

	pose 1	pose 2	pose 3	pose 4
а	-0,245005	-0,914683	-2,056744	-3,054058
b	0,523260	1,240571	2,235073	3,179009
φ	0.101061	0.116316	0.072202	-0.013746

Table: Given relative poses

	solution 1	solution 2	solution 3	solution 4
C_0	1	1	1	1
C ₁	-34.640483	1.999996	6.000008	-4.402381
C ₂	-29.947423	2.000000	0.999996	16.136008
X	18.091483	7.382096	9.160473	-3.697626
У	17.844191	4.243444	1.106973	13.877304
$\Rightarrow R$	71.166696	5.830956	3.162275	2.366097

Table: Obtained results

Hans-Peter Schröcker

Introduction

Kinematic mapping
Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the

canonical equations

Constraint

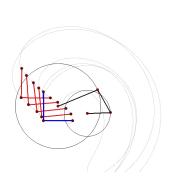
equations and mechanism freedom
The TSAI-UPU

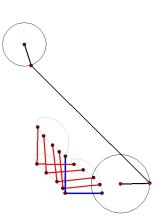
Parallel Manipulator

Synthesis of mechanisms

Planar Burmest

Spherical Four-bar Synthesis





show animation

Manfred L. Husty, Hans-Peter Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms Planar Burmester Problem

Spherical Four-ba

Example: spherical Burmester problem

Given five poses of a spherical system, construct a four-bar mechanism whose endeffector passes through all five poses.

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping

Ouaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator Synthesis of

mechanisms Planar Burmester Problem

Spherical Four-ba

Example: spherical Burmester problem

Given five poses of a spherical system, construct a four-bar mechanism whose endeffector passes through all five poses.

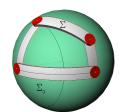
Spherical circle constraint equation:

$$SCS: 4Acx_0x_2 - 4Abx_0x_3 + 4Bax_0x_3 - 4Bcx_3x_2 - 4Cax_0x_2 - 4Cbx_3x_2$$

$$-2Aa - 2Bb - 2Cc + 4Bbx_3^2 + 4Ccx_2^2 + 4Aax_3^2 + 4Aax_2^2 + 4x_1^2Cc +$$

$$4x_1^2Bb - 4x_1Bcx_0 + 4x_1Cbx_0 - 4x_1Abx_2 - 4x_1Bax_2 - 4x_1Acx_3$$

$$-4x_1Cax_3 + B^2 + A^2 + C^2 + a^2 + b^2 + c^2 - r^2 = 0.$$
(39)



Algebraic Geometry

Manfred L. Husty,

Hans-Peter Schröcker

Introduction
Kinematic mapping

Quaternions

Algebraic Geometry

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms Planar Burmester Problem

Spherical Four-bar

$$DCS: \mathbf{w}^{T} \begin{pmatrix} \mathbf{I} & -2\mathbf{B} & \mathbf{0} \\ -2\mathbf{B} & \mathbf{I} & \mathbf{0} \\ \mathbf{0}^{T} & \mathbf{0}^{T} & -1 \end{pmatrix} \mathbf{w} = 0$$
 (40)

Without loss of generality we can assume that the fixed system Σ_0 coincides with one of the five given orientations.

$$DCS_1 := -2Bb - 2Cc - 2Aa + A^2 + C^2 + B^2 + a^2 + b^2 + c^2 - r^2 = 0.$$
 (41)

Now four simple equations are built by subtracting *DCS*₁ from the other four constraint equations:

$$\textit{M}_{1j} = \textit{DCS}_j - \textit{DCS}_1, \qquad \textit{j} = 2, \dots 5.$$

The four difference equations are bilinear in the unknowns *A*, *B*, *C*, *a*, *b*, *c* and do not contain *r*.

Algebraic Geometry

Manfred L. Husty,

Hans-Peter Schröcker

Introduction
Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms Planar Burmester Problem

Spherical Four-bar

Solution algorithm:

- Two of these equations, say $M_{1,2}$ and $M_{1,3}$ are used to solve linearly for two of the unknowns, say a,b.
- The solutions are substituted into $M_{1,4}$ and $M_{1,5}$. This yields two cubic equations C_1, C_2 .
- The resultant of C_1 , C_2 with respect to one of the remaining unknowns, say B yields a univariate polynomial Q^9 of degree nine in the unknown A.
- Q⁹ factors into the solution polynomial Q⁶ of degree six and in three linear factors.

Remarks:

- the univariate can be computed without specifying the pose parameters!
- Branch defect can also be easily detected with this approach!

Brunnthaler, Schröker, and H., Synthesis of spherical four-bar mechanisms using spherical kinematic mapping. Advances in Robot Kinematics, 2006.

Schröcker and H., Kinematic mapping based assembly mode evaluation of spherical four-bar mechanisms. Proceedings of IFToMM 2007. Besancon, 2007.

Example

Algebraic Geometry

Manfred L. Husty,

Manfred L. Husty Hans-Peter Schröcker

Introduction
Kinematic mapping

Quaternions

Algebraic Geometry and Kinematics

Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

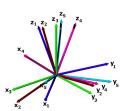
Synthesis of mechanisms Planar Burmester Problem

Spherical Four-ba

	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
Pose1	1	0	0	0
Pose2	0.37721	0.82336	0.38967	0.16722
Pose3	0.0078934	-0.041131	0.085164	-0.99549
Pose4	0.039457	0.77456	-0.60494	-0.18041
Pose5	-0.30301	-0.36492	0.85697	0.20157

Table: Input data for the example

This example yields six real dyads that can be combined to 15 real spherical four-bars.



Five input poses

Manfred L. Husty Hans-Peter Schröcker

Introduction

Kinematic mapping
Quaternions

Algebraic Geometry and Kinematics

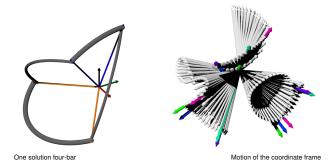
Methods to establish the sets of equations – the canonical equations

Constraint equations and mechanism freedom

The TSAI-UPU Parallel Manipulator

Synthesis of mechanisms Planar Burmester Problem

Spherical Four-bar



Motion of a rigid body