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Introduction

Computational Kinematics is that branch of kinematics which involves
intensive computations not only of numerical type but also of symbolic nature
(Angeles 1993).

Within CK one tries to answer fundamental questions arising in the
analysis and synthesis of kinematic chains.
Kinematic chains are constituent elements of serial or parallel robots,
wired robots, humanoid robots, walking and jumping machines or
rolling and autonomous robots.
The fundamental questions, going far beyond the classical kinematics
involve the number of solutions, complex or real to, for example, forward or
inverse kinematics, the description of singular solutions, the
mathematical solution of workspace or synthesis questions.

Such problems are often described by systems of multivariate algebraic
or functional equations and it turns out that even relatively simple
kinematic problems involving multi-parameter systems lead to complicated
nonlinear equations.

Geometric insight and geometric preprocessing are often key to the solution
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Introduction

Analytic description of kinematic chains:

Parametric and implicit representations

Different parametrizations of the displacement group SE(3) (Euler angles,
Rodrigues parameters, Euler parameters, Study parameters, quaternions,
dual quaternions)

Most the time vector loop equations are used to describe the chains

Very often only a single numerical solution is obtained

Complete analysis and synthesis needs all solutions

We propose the use of algebraic constraint equations, as to be able to use
strong methods and algorithms from algebraic geometry

An important task is to find the simplest algebraic constraint equations, that
describe the chains.

Geometric and algebraic preprocessing is needed before elimination,
Gröbner base computation or numerical solution process starts

Algebraic constraint equations yield answers to the overall behavior of a
kinematic chain→ Global Kinematics
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H-P. Schröcker D. Walter M. Pfurner F. Pernkopf K. Brunnthaler J. Schadlbauer

Mehdi Tale Masouleh, Clément Gosselin (Laval University, Quebec City)

J.M. Selig (London, UK)

P. Zsombor-Murray, M. J. D. Hayes (McGill, Montreal)

A. Karger (Charles University Prag, Czech Republic)
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Introduction

In the following I want to show

Some algebraic basics of kinematics

How algebraic constraint equations can be obtained from parametric
equations involving sines and cosines

How freedom of mechanisms can be formulated within this frame

How the same equations can be used for analysis and synthesis

How singularities can be obtained within the algebraic formulation

How this framework can be used for the analysis of lower dof parallel
manipulators
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Kinematic mapping

Euclidean displacement:

γ : R3→ R3, x 7→ Ax + a (1)

A proper orthogonal 3×3 matrix, a ∈ R3 . . . vector

group of Euclidean displacements: SE(3)[
1
x

]
7→
[
1 oT

a A

]
·
[
1
x

]
. (2)



Kinematics and
Algebraic Geometry

Manfred L. Husty,
Hans-Peter
Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry
and Kinematics

Methods to
establish the sets of
equations – the
canonical equations

Constraint
equations and
mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of
mechanisms

Kinematic mapping

Study’s kinematic mapping κ:

κ : α ∈ SE(3) 7→ x ∈ P7

pre-image of x is the displacement α

1
∆


∆ 0 0 0
p x2

0 + x2
1 −x2

2 −x2
3 2(x1x2−x0x3) 2(x1x3 + x0x2)

q 2(x1x2 + x0x3) x2
0 −x2

1 + x2
2 −x2

3 2(x2x3−x0x1)
r 2(x1x3−x0x2) 2(x2x3 + x0x1) x2

0 −x2
1 −x2

2 + x2
3

 (3)

p = 2(−x0y1 + x1y0−x2y3 + x3y2),

q = 2(−x0y2 + x1y3 + x2y0−x3y1),

r = 2(−x0y3−x1y2 + x2y1 + x3y0),

(4)

∆ = x2
0 + x2

1 + x2
2 + x2

3 .

S2
6 : x0y0 + x1y1 + x2y2 + x3y3 = 0, xi not all 0 (5)

[x0 : · · · : y3]T Study parameters = parametrization of SE(3) with dual
quaternions



Kinematics and
Algebraic Geometry

Manfred L. Husty,
Hans-Peter
Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry
and Kinematics

Methods to
establish the sets of
equations – the
canonical equations

Constraint
equations and
mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of
mechanisms

Kinematic mapping

Study’s kinematic mapping κ:

κ : α ∈ SE(3) 7→ x ∈ P7

pre-image of x is the displacement α

1
∆


∆ 0 0 0
p x2

0 + x2
1 −x2

2 −x2
3 2(x1x2−x0x3) 2(x1x3 + x0x2)

q 2(x1x2 + x0x3) x2
0 −x2

1 + x2
2 −x2

3 2(x2x3−x0x1)
r 2(x1x3−x0x2) 2(x2x3 + x0x1) x2

0 −x2
1 −x2

2 + x2
3

 (3)

p = 2(−x0y1 + x1y0−x2y3 + x3y2),

q = 2(−x0y2 + x1y3 + x2y0−x3y1),

r = 2(−x0y3−x1y2 + x2y1 + x3y0),

(4)

∆ = x2
0 + x2

1 + x2
2 + x2

3 .

S2
6 : x0y0 + x1y1 + x2y2 + x3y3 = 0, xi not all 0 (5)

[x0 : · · · : y3]T Study parameters = parametrization of SE(3) with dual
quaternions



Kinematics and
Algebraic Geometry

Manfred L. Husty,
Hans-Peter
Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry
and Kinematics

Methods to
establish the sets of
equations – the
canonical equations

Constraint
equations and
mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of
mechanisms

Kinematic mapping

Study’s kinematic mapping κ:

κ : α ∈ SE(3) 7→ x ∈ P7

pre-image of x is the displacement α

1
∆


∆ 0 0 0
p x2

0 + x2
1 −x2

2 −x2
3 2(x1x2−x0x3) 2(x1x3 + x0x2)

q 2(x1x2 + x0x3) x2
0 −x2

1 + x2
2 −x2

3 2(x2x3−x0x1)
r 2(x1x3−x0x2) 2(x2x3 + x0x1) x2

0 −x2
1 −x2

2 + x2
3

 (3)

p = 2(−x0y1 + x1y0−x2y3 + x3y2),

q = 2(−x0y2 + x1y3 + x2y0−x3y1),

r = 2(−x0y3−x1y2 + x2y1 + x3y0),

(4)

∆ = x2
0 + x2

1 + x2
2 + x2

3 .

S2
6 : x0y0 + x1y1 + x2y2 + x3y3 = 0, xi not all 0 (5)

[x0 : · · · : y3]T Study parameters = parametrization of SE(3) with dual
quaternions
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How do we get the Study parameters when a proper orthogonal matrix A = [aij ]

and the translation vector a = [ak ]T are given?

Cayley map, not singularity free (180◦)

Rotation part:

x0 : x1 : x2 : x3 = 1 + a11 + a22 + a33 : a32−a23 : a13−a31 : a21−a12

= a32−a23 : 1 + a11−a22−a33 : a12 + a21 : a31 + a13

= a13−a31 : a12 + a21 : 1−a11 + a22−a33 : a23 + a32

= a21−a12 : a31 + a13 : a23−a32 : 1−a11−a22 + a33

(6)

Translation part:

2y0 = a1x1 + a2x2 + a3x3, 2y1 =−a1x0 + a3x2−a2x3,

2y2 =−a2x0−a3x1 + a1x3, 2y3 =−a3x0 + a2x1−a1x2.
(7)
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Remark: some people have been working on this topic like

E. Study, W. Blaschke, E.A. Weiss, ....
A. Yang, B. Roth, B. Ravani (and his students), A. Karger, W. Ströher, H.
Stachel,....
sometimes using different names like Clifford Algebra:
M. McCarthy...

Example:
A rotation about the z-axis through the angle ϕ is described by the matrix

1 0 0 0
0 cosϕ −sinϕ 0
0 sinϕ cosϕ 0
0 0 0 1

 . (8)

Its kinematic image, computed via (6) and (7) is

r = [1 + cosϕ : 0 : 0 : sinϕ : 0 : 0 : 0 : 0]T . (9)

As ϕ varies in [0,2π), r describes a straight line on the Study quadric which
reads after algebraization

r = [1 : 0 : 0 : u : 0 : 0 : 0 : 0]T . (10)
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A special one parameter motion is defined by the matrix
1 0 0 0
0 cos t −sin t 0
0 sin t cos t 0

sin t
2 0 0 1

 . (11)

Its kinematic image, computed via (6) and (7) reads

r =

[
2 + 2 cos t : 0 : 0 : 2 sin t : sin

t
2

sin t : 0 : 0 :−1
2

sin
t
2

(2 + 2 cos t)
]

(12)

After algebraization and some manipulation we obtain

r = [−1 + u4 : 0 : 0 :−2u(1 + u2) : 2u2 : 0 : 0 : u(1−u2)], (13)

represents a rational curve of degree four on the Study quadric.

The motion corresponding to this curve is a special case of the well known
Bricard motions where all point-paths are spherical curves.
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S2
6 is called Study quadric

the map between S2
6 and SE(3) is not one to one,

F : x0 = x1 = x2 = x3 = 0, E : y2
0 + y2

1 + y2
2 + y2

3 = 0. (14)

Exceptional generator F , exceptional quadric E

(these things come from the circle points in Euclidean geometry!)
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Planar displacements: x2 = x3 = 0,y0 = y1 = 0

1
x2

0 + x2
3

 x2
0 + x2

3 0 0
−2(x0y1−x3y2) x2

0 −x2
3 −2x0x3

−2(x0y2 + x3y1) 2x0x3 x2
0 −x2

3


SE(2) (we omit the last row and the last column)

Spherical displacements: yi = 0

1
∆

x2
0 + x2

1 −x2
2 −x2

3 2(x1x2−x0x3) 2(x1x3 + x0x2)
2(x1x2 + x0x3) x2

0 −x2
1 + x2

2 −x2
3 2(x2x3−x0x1)

2(x1x3−x0x2) 2(x2x3 + x0x1) x2
0 −x2

1 −x2
2 + x2

3

 (15)

where ∆ = x2
0 + x2

1 + x2
2 + x2

3 . → SO+(3)

generate 3-spaces on S2
6

more properties:

J. Selig, Geometric Fundamentals of Robotics, 2nd. ed. Springer 2005
H., Pfurner, Schröcker, Brunnthaler. Algebraic methods in mechanism analysis
and synthesis. Robotica, 25(6):661-675, 2007.
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Quaternions

The set of quaternions H is the vector space R4 together with the quaternion
multiplication

(a0,a1,a2,a3)? (b0,b1,b2,b3) = (a0b0−a1b1−a2b2−a3b3,

a0b1 + a1b0 + a2b3−a3b2,

a0b2−a1b3 + a2b0−a3b1,

a0b3−a1b2−a2b1 + a3b0).

(16)

The triple (H,+,?) (with component wise addition) forms a skew field. The real
numbers can be embedded into this field via x 7→ (x ,0,0,0), and vectors x ∈ R3

are identified with quaternions of the shape (0,x).
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Every quaternion is a unique linear combination of the four basis quaternions
1 = (1,0,0,0), i = (0,1,0,0), j = (0,0,1,0), and k = (0,0,0,1).

The multiplication table is

? 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Conjugate quaternion and norm are defined as

A = (a0,−a1,−a2,−a3), ‖A‖=
√

A?A =
√

a2
0 + a2

1 + a2
2 + a2

3. (17)
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Quaternions are closely related to spherical kinematic mapping.

Consider a vector a = [a1,a2,a3]T and a matrix X of the shape (15).

The product b = X ·a can also be written as

B = X ?A?X (18)

where X = (x0,x1,x2,x3), ‖X‖= 1 and A = (0,a), B = (0,b).

From this follows:

Spherical displacements can also be described by unit quaternions and
spherical kinematic mapping maps a spherical displacement to the
corresponding unit quaternion.
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To describe general Euclidean displacements extend the concept of quaternions.

A dual quaternion Q is a quaternion over the ring of dual numbers

Q = Q0 + εQ1, (19)

where ε2 = 0.
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The algebra of dual quaternions has eight basis elements 1, i, j, k, ε, εi, εj, and
εk and the multiplication table

? 1 i j k ε εi εj εk
1 1 i j k ε εi εj εk
i i −1 k −j εi −ε1 εk −εj
j j −k −1 i εj −εk −ε1 εi
k k j −i −1 εk εj −εi −ε1

ε1 ε εi εj εk 0 0 0 0
εi εi −ε1 εk −εj 0 0 0 0
εj εj −εk −ε1 εi 0 0 0 0
εk εk εj −εi −ε1 0 0 0 0
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Dual quaternions know two types of conjugation.

The conjugate quaternion and the conjugate dual quaternion of a dual
quaternion Q = x0 + εy0 + x + εy are defined as

Q = x0 + εy0−x− εy and Qe = x0− εy0 + x− εy, (20)

respectively. The norm of a dual quaternion is

‖Q‖=
√

QQ. (21)
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With these definitions, the equation b = X ·a where X is a matrix of the shape (3)
can be written as

B = Xe ?A?X (22)

where X = x + εy, ‖X‖= 1, x = (x0, . . . ,x3)T , y = (y0, . . . ,y3)T , and x ·y = 0.

The last condition is precisely the Study condition (5).

A and B are dual quaternions of the type: A = 1 + εa, B = 1 + εb
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Constraint varieties

7→

a constraint that removes one degree of freedom maps to a hyper-surface
in P7

a set of constraints corresponds to a set of polynomial equations
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A simple example

1
p (0,0)

2

333p (a ,b )

p (a ,0)y

x

1

333

22

P (A ,B )

P (A ,0)P (0,0)

Y

X

2

Figure: Planar 3-RPR parallel mechanism. Figure: Geometric interpretations

Condition that one point of the moving system is bound to move on a circle

(x2−
1
2

(c2 + C2−x1(C1−c1)))2 + (x3−
1
2

(x1(c2−C2)−C1−c1))2

− 1
4

R2(x2
1 + 1) = 0, (23)
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A simple example

Three constraint equations:

h1 : 4x2
2 + 4x2

3 + R1 = 0

h2 : 4x2
2 −4A2x3x0 + 4x3x0a2 + 4x2

3 −4x1x2a2−4x1A2x2 + 4x2
1 A2a2

−2A2a2 + R2 = 0

h3 : 4x2
2 + 4B3x0x2−4A3x3x0−4x2x0b3 + 4x3x0a3 + 4x2

3 −4x1B3x0a3

+ 4x1A3x0b34x1x2a3−4x1B3x3−4x1A3x2−4x1x3b3−

+ 4x2
1 A3a3 + 4x2

1 B3b3−2B3b3−2A3a3 + R3 = 0. (24)

Figure: Geometric interpretation in kinematic image space
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Image space transformations

Figure: Fixed and moving coordinate
systems

Figure: Robot coordinate systems

The relative displacement α depends on the choice of fixed and moving
frame

Coordinate systems are usually attached to the base and the end-effector
of a mechanism

Changes of fixed and moving frame induce transformations on S2
6 , impose

a geometric structure on S2
6 .
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Image space transformations

y = Tf Tmx, Tm =

[
A O
B A

]
, Tf =

[
C O
D C

]
, (25)

A =


m0 −m1 −m2 −m3
m1 m0 m3 −m2
m2 −m3 m0 m1
m3 m2 −m1 m0

 , B =


m4 −m5 −m6 −m7
m5 m4 m7 −m6
m6 −m7 m4 m5
m7 m6 −m5 m4

 (26)

C =


f0 −f1 −f2 −f3
f1 f0 −f3 f2
f2 f3 f0 −f1
f3 −f2 f1 f0

 , D =


f4 −f5 −f6 −f7
f5 f4 −f7 f6
f6 f7 f4 −f5
f7 −f6 f5 f4

 (27)

and O is the four by four zero matrix.

Tm and Tf commute

Tm and Tf induce transformations of P7 that fix S2
6 , the exceptional

generator F , and the exceptional quadric E ⊂ F
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Affine (Projective) Varieties - Ideals

A set of constraints is described by a set of polynomials

The set of polynomials forms a ring which is denoted by k [x0, . . .xn].

If k is a field and f1, . . . , fs are polynomials in k [x0, . . .xn], and if

V(f1, . . . , fs) = {(a1, . . . ,an) ∈ kn : fi (a1, . . . ,an) = 0, for all 1≤ i ≤ s}

then V(f1, . . . , fs) is called an affine variety defined by the polynomials fi .

The definition says essentially that the affine variety is the zero set of the
defining polynomials.

In case of homogeneous polynomials the variety is called a projective
variety.

An ideal I is a subset of k [x0, . . .xn] that satisfies the following properties:

(i) 0 ∈ I.

(ii) If f ,g ∈ I, then f + g ∈ I.

(iii) If f ∈ I, g ∈ k then fg ∈ I.

D. A. Cox, J. B. Little, and D. O’Shea, Ideals, Varieties and Algorithms, Springer,
third ed., 2007.
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Example: Stewart-Gough platform

Figure: Stewart-Gough platform

Sphere constraint:

1 in canonical form

4y2
0 + 4y2

3 + 4y2
2 + 4y2

1 − (x2
1 + x2

2 + x2
0 + x2

3 )r = 0
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Sphere constraint:

2 in general form

h : R(x2
0 + x2

1 + x2
2 + x2

3 ) + 4(y2
0 + y2

1 + y2
2 + y2

3 )−2x2
0 (Aa + Bb + Cc)

+ 2x2
1 (−Aa + Bb + Cc) + 2x2

2 (Aa−Bb−Cc) + 2x2
3 (Aa + Bb + Cc)

+ 2x2
3 (Aa + Bb−Cc) + 4[x0x1(Bc−Cb) + x0x2(Ca−Ac)

+ x0x3(Ab−Ba)−x1x2(Ab + Ba)−x1x3(Ac + Ca)

−x2x3(Bc + Cb) + (x0y1 −y0x1)(A−a) + (x0y2 −y0x2)(B−b)

+ (x0y3 −y0x3)(C−c) + (x1y2 −y1x2)(C + c)− (x1y3 −y1x3)(B + b)

+ (x2y3 −y2x3)(A + a)] = 0, (28)

F :=[177x2 y3 −177x3 y2 −20x1 y0 + 20x0 y1 −34059x0 x3 + 12236x2 x1 −x0
2S1 −x1

2S1 −x3
2S1 −x2

2S1 ,

156x2 y3 −156x3 y2 −101x1 y0 + 101x0 y1 + 68081x0 x3 −101796x2 x1 −x0
2S2 −x1

2S2 −x3
2S2 −x2

2S2 ,

−x0
2S3 −x1

2S3 −x3
2S3 −x2

2S3 −198x2 y3 + 198x3 y2 −61x1 y0 + 61x0 y1 −68203x0 x3 −126565x2 x1 ,

438313x2
2 + x0

2S4 + x1
2S4 + x3

2S4 + x2
2S4 + 792x2 y3 −792x3 y2 + 244x1 y0 −244x0 y1 −1370x3 y1+

422x0 y2 −422x2 y0 + 1370y3 x1 −544796x0 x3 + 505072x2 x1 −437869x1
2 −11x0

2 + 455x3
2 ,

−438313x2
2 −x0

2S5 −x1
2S5 −x3

2S5 −x2
2S5 + 792x2 y3 −792x3 y2 + 244x1 y0 −244x0 y1 + 1370x3 y1

−422x0 y2 + 422x2 y0 −1370y3 x1 −544796x0 x3 + 505072x2 x1 + 437869x1
2 + 11x0

2 −455x3
2 ,

x0 y0 + x1 y1 + x2 y2 + x3 y3 ,

−x0
2W1 −x1

2W1 −x3
2W1 −x2

2W1 −204402x0 x3 −297x2 x1 ]

40 solutions, H. (1996)



Kinematics and
Algebraic Geometry

Manfred L. Husty,
Hans-Peter
Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry
and Kinematics
Constraint Varieties

Image space
transformations

Affine (Projective)
Varieties - Ideals

Some examples

Methods to
establish the sets of
equations – the
canonical equations

Constraint
equations and
mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of
mechanisms

Sphere constraint:

2 in general form

h : R(x2
0 + x2

1 + x2
2 + x2

3 ) + 4(y2
0 + y2

1 + y2
2 + y2

3 )−2x2
0 (Aa + Bb + Cc)

+ 2x2
1 (−Aa + Bb + Cc) + 2x2

2 (Aa−Bb−Cc) + 2x2
3 (Aa + Bb + Cc)

+ 2x2
3 (Aa + Bb−Cc) + 4[x0x1(Bc−Cb) + x0x2(Ca−Ac)

+ x0x3(Ab−Ba)−x1x2(Ab + Ba)−x1x3(Ac + Ca)

−x2x3(Bc + Cb) + (x0y1 −y0x1)(A−a) + (x0y2 −y0x2)(B−b)

+ (x0y3 −y0x3)(C−c) + (x1y2 −y1x2)(C + c)− (x1y3 −y1x3)(B + b)

+ (x2y3 −y2x3)(A + a)] = 0, (28)

F :=[177x2 y3 −177x3 y2 −20x1 y0 + 20x0 y1 −34059x0 x3 + 12236x2 x1 −x0
2S1 −x1

2S1 −x3
2S1 −x2

2S1 ,

156x2 y3 −156x3 y2 −101x1 y0 + 101x0 y1 + 68081x0 x3 −101796x2 x1 −x0
2S2 −x1

2S2 −x3
2S2 −x2

2S2 ,

−x0
2S3 −x1

2S3 −x3
2S3 −x2

2S3 −198x2 y3 + 198x3 y2 −61x1 y0 + 61x0 y1 −68203x0 x3 −126565x2 x1 ,

438313x2
2 + x0

2S4 + x1
2S4 + x3

2S4 + x2
2S4 + 792x2 y3 −792x3 y2 + 244x1 y0 −244x0 y1 −1370x3 y1+

422x0 y2 −422x2 y0 + 1370y3 x1 −544796x0 x3 + 505072x2 x1 −437869x1
2 −11x0

2 + 455x3
2 ,

−438313x2
2 −x0

2S5 −x1
2S5 −x3

2S5 −x2
2S5 + 792x2 y3 −792x3 y2 + 244x1 y0 −244x0 y1 + 1370x3 y1

−422x0 y2 + 422x2 y0 −1370y3 x1 −544796x0 x3 + 505072x2 x1 + 437869x1
2 + 11x0

2 −455x3
2 ,

x0 y0 + x1 y1 + x2 y2 + x3 y3 ,

−x0
2W1 −x1

2W1 −x3
2W1 −x2

2W1 −204402x0 x3 −297x2 x1 ]

40 solutions, H. (1996)



Kinematics and
Algebraic Geometry

Manfred L. Husty,
Hans-Peter
Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry
and Kinematics

Methods to
establish the sets of
equations – the
canonical equations

Constraint
equations and
mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of
mechanisms

Implicitization Algorithm

Is there a method to generate constraint equations without (deep) insight in the
geometric structure of a kinematic chain??

Σ0=Σ1
Σ2

Σ3

EE frame

Figure: Canonical 3R-chain

the relative position of two rotation axes is described by the usual
Denavit-Hartenberg parameters (αi ,ai ,di )

Gi =


1 0 0 0
ai 1 0 0
0 0 cos(αi ) −sin(αi )
di 0 sin(αi ) cos(αi )

 . (29)

Mi =


1 0 0 0
0 cos(ui ) −sin(ui ) 0
0 sin(ui ) cos(ui ) 0
0 0 0 1

 or Mi =


1 0 0 0
0 1 0 0
0 0 1 0
u 0 0 1

 (30)

Following this sequence of transformations the endeffector will have the following pose:

D = M1 ·G1 ·M2 ·G2 · · · · ·Mn, (31)

Parametric equation
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Σ0=Σ1
Σ2

Σ3

EE frame

Figure: Canonical 3R-chain
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 (30)

Following this sequence of transformations the endeffector will have the following pose:
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parametric→ implicit

What do we gain?

Using all features of algebraic geometry symbolic software (Maple, Mathematica,
Singular, ....) e.g.:
with(PolynomialIdeals):

[‘<,>‘,Add,Contract,EliminationIdeal, EquidimensionalDecomposition, Generators, HilbertDimension,
IdealContainment, IdealInfo, IdealMembership, Intersect,IsMaximal, IsPrimary, IsPrime, IsProper, IsRadical,
IsZeroDimensional, MaximalIndependentSet, Multiply, NumberOfSolutions, Operators, PolynomialIdeal,
PrimaryDecomposition, PrimeDecomposition, Quotient, Radical, RadicalMembership, Saturate, Simplify,
UnivariatePolynomial, VanishingIdeal, ZeroDimensionalDecomposition, in, subset]

with(Groebner);

[Basis,FGLM, HilbertDimension, HilbertPolynomial ,HilbertSeries, Homogenize, InitialForm, InterReduce,IsProper,

IsZeroDimensional,LeadingCoefficient,LeadingMonomial, LeadingTerm, MatrixOrder, MaximalIndependentSet,

MonomialOrder, MultiplicationMatrix, MultivariateCyclicVector, NormalForm, NormalSet,

RationalUnivariateRepresentation, Reduce, RememberBasis,SPolynomial,Solve,SuggestVariableOrder, TestOrder,

ToricIdealBasis,TrailingTerm, UnivariatePolynomial, Walk, WeightedDegree]

all solutions, sometimes a complete analytic description of a workspace.

Singularities can be treated, pathologic cases (selfmotion) can be detected and
degree of freedom computation (Hilbert dimension) can be performed
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Back to the parametric equations!

Half tangent substitution transforms the rotation angles ui into algebraic
parameters ti and one ends up with eight parametric equations of the form:

x0 = f0(t1, . . . tn),

x1 = f1(t1, . . . tn),

... (32)

y3 = f8(t1, . . . tn).

Equations will be rational having a denominator of the form
(1 + t2

1 ) · . . . · (1 + t2
n ) which can be canceled because the Study parameters

xi ,yi are homogeneous.

The same can be done with a possibly appearing common factor of all
parametric expressions.
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there exists a one-to-one correspondence from all spatial transformations to
the Study quadric

transformation parametrized by n parameters t1, . . . , tn
→ kinematic mapping a set of corresponding points in P7

ask now for the smallest variety V ∈ P7 (with respect to inclusion) which contains
all these points

What do we know about this variety?

Its ideal V consists of homogeneous polynomials and contains
x0y0 + x1y1 + x2y2 + x3y3, i.e. the equation for the Study quadric S2

6 .

the minimum number of polynomials to describe V corresponds to the
degrees of freedom (dof) of the kinematic chain

If the number of generic parameters is n then m = 6−n polynomials are
necessary to describe V
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General observation: the parametric equations of a geometric object have to
fulfill the implicit equations

Make a general ansatz of a polynomial of degree n:

p = ∑
α,β

Ck xα

i yβ

j

substitute the parametric equations into p
resulting expression is a polynomial f in ti
f has to vanish for all ti →
all coefficients have to vanish→
collect with respect to the powerproducts of the ti and extract their coefficients→
system of linear equations in the

(n+7
n

)
coefficients Ck

determine Ck

possibly increase the degree of the ansatz polynomial

Walter and H. , On Implicitization of Kinematic Constraint Equations, Chin.
J. of Mech. Design, 2010.
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Remarks:

The number of equations depends on the particular design of the chain

in general the system will consist of more equations than unknowns
because in general there are more powerproducts than unknowns Ci

system is highly overconstrained

equations have to be dependent, at least if the degree of the ansatz
polynomial is increased, because the constraint variety will have some
algebraic degree.

if these systems can be solved depends how complicated the chain is (we
have solved up to degree 8)

in a step of the algorithm polynomials could be created that are contained in
the ideal of polynomials created in steps before. Test and reduce w.r.t. a
Grö bner basis

the algorithm could create more polynomials than needed; take out of the
set the number needed (simplest!)

Walter and H. , On Implicitization of Kinematic Constraint Equations, Chin. J. of
Mech. Design, 2010.
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Constraint equations and mechanism freedom

Definition
The degree of freedom of a mechanical system is the Hilbert dimension of the
ideal generated by the constraint polynomials, the Study quadric and a
normalizing condition

Example: Self motions of Stewart Platforms

> with(Groebner):

> F:=[U4,U2,U3,U8,U10,U7,h1,x0^2+x1^2+x2^2+x3^2-1];

F := [244x1y0 −792x3y2 −244x0y1 + 1370y3x1 −1370x3y1 + 422x0y2 + 439323x2
2 + 1465x2

3 + 999x2
0 −

436859x2
1 + 792x2y3 −422x2y0 −544796x0x3 + 505072x2x1 , −101x1y0 −156x3y2 + 101x0y1 + 156x2y3 +

68081x0x3 −101796x2x1 −
4401

4 x2
1 −

4401
4 x2

3 −
4401

4 x2
2 −

4401
4 x2

0 ,−61x1y0 + 198x3y2 + 61x0y1 −198x2y3 −

68203x0x3 −126565x2x1 −
6713

2 x2
1 −

6713
2 x2

3 −
6713

2 x2
2 −

6713
2 x2

0 ,−204402x0x3 −297x2x1 −
3749

2 x2
1 −

3749
2 x2

3 −
3749

2 x2
2 −

3749
2 x2

0 ,−404x1y0 −624x3y2 + 404x0y1 + 1082y3x1 −1082x3y1 −700x0y2 −375644x2
2 −

22627x2
3 −22712x2

0 + 330305x2
1 + 624x2y3 + 700x2y0 −545284x0x3 −408372x2x1 ,x0y0 + x1y1 + x2y2 +

x3y3 ,−640x1y0 −5664x3y2 + 640x0y1 + 384y3x1 −384x3y1 + 1496x0y2 + 4y2
0 + 4y2

3 + 4y2
2 + 4y2

1 + 1891923x2
2 +

1761263x2
3 −87533x2

0 −218193x2
1 + 5664x2y3 −1496x2y0 −1089888x0x3 + 391552x2x1 ,x

2
0 + x2

1 + x2
2 + x2

3 −1]

> HilbertDimension(F,tdeg(x0,x1,x2,x3,y0,y1,y2,y3));

0
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Griffis-Duffy platform

> with(Groebner):

> G:=[U2,U3,U4,U5,h1,U7,x0^2+x1^2+x2^2+x3^2-1];

G := [−4x2y3 + 12x1y0 + 4y2x3 + 4
√

3x1x2 ,8
√

3x2y0 ,−4x2y3 −12x1y0 + 4y2x3 + 4
√

3x1x2 ,−
2
3
√

3(
√

3x2y3 −

3
√

3x1y0 −
√

3y2x3 +
√

3x2
2 +
√

3x2
3 −3x1x2 + 3x2y0 −3y3x1 + 3x3y1),4

√
3y0(

√
3x1 + x2),4y2

0 + 4y2
1 + 4y2

3 + 4y2
2 +

x2
3 (2−R) + x2

1 (2−R) + x2
2 (2−R) + 2

√
3x3y1 + 6x1y0 + 2y2x3 + 2

√
3x2y0 −2x2y3 −2

√
3y3x1 + x2

1 −x2
3 +

2
√

3x1x2 −x2
2 ,x1y1 + x2y2 + x3y3 ,−1 + x2

1 + x2
2 + x2

3 ]

> HilbertDimension(F,tdeg(x1,x2,x3,y0,y1,y2,y3));

1
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√
3y3x1 + x2

1 −x2
3 +
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2 + x2

3 ]
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Schatz Mechanism - Bricard’s overconstrained 6R chain

Turbula T2F Heavy-Duty Shaker-Mixer (Willy A. Bachofen AG, http://www.wab.ch/ie/e/turbula1.htm

The DH parameters of Bricard’s orthogonal chain

i ai di αi
1 a1 0 π/2
2 a2 0 π/2
3 a3 0 π/2
4 a4 0 π/2
5 a5 0 π/2
6 a6 0 ±π/2

Table: DH parameters of Bricard’s orthogonal chain

with the additional condition that a2
1−a2

2 + a2
3−a2

4 + a2
5−a2

6 = 0.
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Schatz Mechanism - Bricard’s overconstrained 6R chain

F := [−2z0 + z1 + z2v1 −2z3v1 −2s1 −2s2v1 ,−z0 + 2z1 + 2z2v1 −z3v1 −2s0 −2s3v1 ,−z1v1 + z2 −2s1v1 +
2s2 ,−z0v1 + z3 + 2s0v1 −2s3 ,z0v6q + z1 + 2z1v6q −z2 + 2z2v6q + z3v6q −2s0v6q −2s1 + 2s2 −2s3v6q ,−z0 +

2z0v6q + z1v6q + z2v6q + z3 + 2z3v6q −2s0 + 2s1v6q + 2s2v6q + 2s3 ,z0 + 2z0v6q −z1v6q + z2v6q + z3 −2z3v6q +

2s0−2s1v6q +2s2v6q +2s3 ,−z0v6q −z1 +2z1v6q −z2−2z2v6q +z3v6q +2s0v6q +2s1 +2s2−2s3v6q ,s0z0 +s1z1 +

s2z2 + s3z3 ,z
2
0 + z2

1 + z2
2 + z2

3 −1]

> HilbertDimension(F );

1

> Basis(F,tdeg[z0,z1,z2,z3,s0,s1,s2,s2,v6q,v1]);

F := [z2 −z1 −z0 + z3 ,2s1 −2s0 + z1 + z0 ,2s2 + 2s0 −z1 + z3 ,2s3 + 2s0 −2z1 −z0 + z3 ,2s0z0 −2s0z3 + 2z1z3 + z0z3 −
z2
3 ,z0v1 −z3v1 −2s0 + 2z1 −z3 ,2z2

1 −1 + 2z1z0 + 2z2
0 −2z1z3 −2z0z3 + 2z2

3 ,z1v6q + z0v6q −2s0 + z1 ,4s2
0 −4s0z1 −

z2
0 + 2z1z3 + 2z0z3 −2z2

3 ,2s0v1 −z3v1 −z0 + z3 ,2s0v6q −z0v6q + 2z3v6q −2s0 −z0 ,8v6q z2
3 −2−4v1z2

3 + v6q v1 +

12s0z1 + 2z1z0 + 2z2
0 −12s0z3 −10z0z3 + 6z2

3 −4v6q + v1 ,8v6q z0z3 −1 + 4s0z1 + 2z1z0 −12s0z3 + 8z1z3 + 2z0z3 −

v6q ,2v1z1z3 + z2
0 + 4s0z3 −4z1z3 −2z0z3 + 3z2

3 ,v6q v1z3 −z0v6q −z3v1 −z0 ,z
3
0 + 4s0z1z3 + z2

0 z3 −2z1z2
3 −z0z2

3 +

3z3
3 −2z3 ,8v6q z2

0 −2 + 4v1z2
3 −v6q v1 + 4s0z1 + 6z1z0 + 6z2

0 −4s0z3 + 2z0z3 + 2z2
3 −v1 ,2v1z3

3 −z1z2
0 −2z1z0z3 +

4s0z2
3 −5z1z2

3 + 2z3
3 −z3v1 ,4v2

1 z2
3 + 1−v6q v2

1 + 4v6q v1 −v2
1 −4z1z0 + 16s0z3 −12z1z3 −4z0z3 + 8z2

3 −v6q +

2v1 ,v
2
6q v2

1 −1−4v2
6q v1 + v2

6q −v2
1 ]

M. Pfurner, PhD thesis, Innsbruck, 2007

http://repository.uibk.ac.at/viewer.alo?viewmode=overview&objid=1015078&page=



Kinematics and
Algebraic Geometry

Manfred L. Husty,
Hans-Peter
Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry
and Kinematics

Methods to
establish the sets of
equations – the
canonical equations

Constraint
equations and
mechanism freedom

The TSAI-UPU
Parallel Manipulator

Synthesis of
mechanisms
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2
0 + z2

1 + z2
2 + z2

3 −1]
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1
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3z3
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The TSAI-UPU Parallel Manipulator

x

y

z

x

y

z
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B1

A2

B2

A3

B3

Σ0

Σ1

d1

d2

d3

2

1

4

3

h1

h2

difference to the SNU-3UPU manipulator:
legs are rotated by 90 degrees before assembly
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The algebraic constraint equations

g1 : x0 y0 + x1 y1 + x2 y2 + x3 y3 = 0

g2 : (h1 −h2)x0 x2 + (h1 + h2)x1 x3 −x2 y3 −x3 y2 = 0

g3 : (h1 −h2)x0 x3 − (h1 + h2)x1 x2 −4x1 y1 −3x2 y2 −x3 y3 = 0

g4 : (h1 −h2)x0 x3 − (h1 + h2)x1 x2 + 2x1 y1 + 2x3 y3 = 0

g5 :(h2
1 −2h1 h2 + h2

2 −d2
1 )x2

0 + 2
√

3(h1 −h2)x0 y2 −2(h1 −h2)x0 y3 + (h2
1 + 2h1 h2 + h2

2 −d2
1 )x2

1−

−2(h1 + h2)x1 y2 −2
√

3(h1 + h2)x1 y3 + (h2
1 −h1 h2 + h2

2 −d2
1 )x2

2 + 2
√

3h1 h2 x2 x3−

−2
√

3(h1 −h2)x2 y0 + 2(h1 + h2)x2 y1 + (h2
1 + h1 h2 + h2

2 −d2
1 )x2

3 + 2(h1 −h2)x3 y0+

+ 2
√

3(h1 + h2)x3 y1 + 4(y2
0 + y2

1 + y2
2 + y2

3 ) = 0

g6 :(h2
1 −2h1 h2 + h2

2 −d2
2 )x2

0 −2
√

3(h1 −h2)x0 y2 −2(h1 −h2)x0 y3 + (h2
1 + 2h1 h2 + h2

2 −d2
2 )x2

1−

−2(h1 + h2)x1 y2 + 2
√

3(h1 + h2)x1 y3 + +(h2
1 −h1 h2 + h2

2 −d2
2 )x2

2 −2
√

3h1 h2 x2 x3+

+ 2
√

3(h1 −h2)x2 y0 + 2(h1 + h2)x2 y1 + +(h2
1 + h1 h2 + h2

2 −d2
2 )x2

3 + 2(h1 −h2)x3 y0−

−2
√

3(h1 + h2)x3 y1 + 4(y2
0 + y2

1 + y2
2 + y2

3 ) = 0

g7 :(h2
1 −2h1 h2 + h2

2 −d2
3 )x2

0 + 4(h1 −h2)x0 y3 + (h2
1 + 2h1 h2 + h2

2 −d2
3 )x2

1 + 4(h1 + h2)x1 y2+

+ (h2
1 + 2h1 h2 + h2

2 −d2
3 )x2

2 −4(h1 + h2)x2 y1 + (h2
1 −2h1 h2 + h2

2 −d2
3 )x2

3 −4(h1 −h2)x3 y0+

+ 4(y2
0 + y2

1 + y2
2 + y2

3 ) = 0

normalization equation is added:
g8 : x2

0 + x2
1 + x2

2 + x2
3 −1 = 0 (33)
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Solving the system of equations

polynomial ideal over the ring R[h1,h2,d1,d2,d3][x0,x1,x2,x3,y0,y1,y2,y3]

I = 〈g1,g2,g3,g4,g5,g6,g7,g8〉

primary decomposition

〈g1,g2,g3,g4〉=
6⋂

i=1

Ji

J1 = 〈y0,x1,x2,x3〉, J2 = 〈x0,y1,x2,x3〉,J3 = 〈y0,y1,x2,x3〉, J4 = 〈x0,x1,y2,y3〉,
J5 = 〈(h1−h2)x0 x2 + (h1 + h2)x1 x3−x2 y3−x3 y2,

(h1−h2)x0 x3− (h1 + h2)x1 x2−x2 y2 + x3 y3,

2x1 y1 + x2 y2 + x3 y3,x0 y0−x1 y1,(h1−h2)2 x2
0 + (h1 + h2)2 x2

1 −y2
2 −y2

3 ,

(h1 + h2)x3
2 y0−3(h1−h2)x2

2 x3 y1−2x2
2 y0 y1−

−3(h1−h2)x2 x2
3 y0 + (h1−h2)x3

3 y1−2x2
3 y0 y1〉

J6 = 〈x0,x1,x2,x3〉.

decomposition of the vanishing set of I

V (I ) =
5⋃

i=1

V (Ji ∪〈g5,g6,g7,g8〉) =
5⋃

i=1

V (Ki )
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Solving the system of equations

solutions for generic parameters h1,h2 and d1,d2,d3:

|V (K1)|= |V (K2)|= 2, |V (K3)|= 4,

|V (K4)|= 6, |V (K5)|= 64.

solutions for parameters with d1 = d2 = d3:

|V (K1)|= |V (K2)|= |V (K3)|= 2,

|V (K4)|= 6, |V (K5)|= 60

“home pose” is solution of multiplicity 1 (SNU-3UPU→ multiplicity 4)
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Operation modes

partial system Ji ∪〈g5,g6,g7g8〉 ←→ operation mode

five different modes:
- translational mode, J1 = 〈y0,x1,x2,x3〉
- twisted translational mode, J2 = 〈x0,y1,x2,x3〉
- planar mode, J3 = 〈y0,y1,x2,x3〉
- upside-down planar mode, J4 = 〈x0,x1,y2,y3〉
- general mode, J5 = 〈. . .〉

Transformation matrix for translational mode
1 0 0 0
−2y1 1 0 0
−2y2 0 1 0
−2y3 0 0 1





Kinematics and
Algebraic Geometry

Manfred L. Husty,
Hans-Peter
Schröcker

Introduction

Kinematic mapping

Quaternions

Algebraic Geometry
and Kinematics

Methods to
establish the sets of
equations – the
canonical equations

Constraint
equations and
mechanism freedom

The TSAI-UPU
Parallel Manipulator
Solving the system of
equations

Operation modes

Singular poses

Changing operation
modes

Synthesis of
mechanisms

Singular poses

conditions on h1,h2,d1,d2,d3 for singular poses are computable

Example: translational mode

d4
1 + d4

2 + d4
3 −d2

1 d2
2 −d2

1 d2
3 −d2

2 d2
3−

−3(h1−h2)2 (d2
1 + d2

2 + d2
3 ) + 9(h1−h2)4 = 0
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Example: translational mode

d4
1 + d4

2 + d4
3 −d2

1 d2
2 −d2

1 d2
3 −d2

2 d2
3−

−3(h1−h2)2 (d2
1 + d2

2 + d2
3 ) + 9(h1−h2)4 = 0
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F1 F2 (d1 + d2−d3)(d1 + d3−d2)(d2 + d3−d1)F3 = 0
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K1 K2 K3 K4 K5

K1 3 −1 2 −1 2
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K3 2 2 3 −1 2
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mode change poses are also singular poses

conditions on h1,h2,d1,d2,d3 for such poses are computable

Example: translational mode←→ general mode

d4
1 + d4

2 + d4
3 −d2

1 d2
2 −d2

1 d2
3 −d2

2 d2
3 −36(h1−h2)4 = 0

h1 = 12,h2 = 7
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7(d4
1 + d4

2 + d4
3 )−11(d2

1 d2
2 −d2

1 d2
3 −d2

2 d2
3 ) = 0

h1 = 12,h2 = 7
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Synthesis of mechanisms

Changing the point of view the same constraint equations can be used for
mechanism synthesis

Function synthesis

Trajectory synthesis

Motion synthesis

Planar Burmester problem:

Given five poses of a planar system, construct a fourbar mechanism whose
endeffector passes through all five poses
BURMESTER L. (19th century)
It is well known that the solution of this problem yields four dyads that can be
combined to six four-bar mechanisms

Figure: Five given poses
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Figure: All possible four-bar mechanisms: a general one, a slider crank and a double slider
mechanism

Here the expanded version of the constraint equation has to be used

(R2−C2
1 −C2

2 −C0(x2 + y2) + 2C1x + 2C2y)X 2
0

+(R2−C2
1 −C2

2 −C0(x2 + y2)−2C1x−2C2y)X 2
1

+((4C2x−4C1y)X1 + (4C0y −4C2)X2 + (−4C0x + 4C1)X3)X0
+((4C1 + 4C0x)X2 + (4C0y + 4C2)X3)X1−4C0X 2

3 −4C0X 2
2 = 0.

(34)

Xi image space coordinates
Ci centers of the fixed pivots
x ,y centers of the moving pivots
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One of those points can be considered to be the point corresponding to the
identity

(X0 : X1 : X2 : X3) = (1 : 0 : 0 : 0) (35)

this simplifies the constraint equation

(−X0X3x + X0X2y + X1X2x + X3X1y −X 2
2 −X 2

3 )C0−X0X2C2 + X0X3C1
+X0X1xC2−X 2

1 xC1 + X1X2C1−X0X1yC1−X 2
1 yC2 + X1X3C2 = 0

(36)
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Now the four remaining poses are given via their image space coordinates:
Xij , j = 1 . . .4.

It would be important for the designer to know in advance if among the
synthesized mechanisms is a slider crank. This is the case if the following two
conditions are fulfilled:

E1 :

(
−

X13(−X2
11X02X22+X01X21X2

12−X11X31X2
12+X2

11X12X32)

X11X12(X01X12−X11X02)
+ X23

)
X03

−
(X11X31X02X12−X01X11X12X32−X01X21X02X12+X01X11X02X22)X2

13
X12X11(X01X12−X11X02)

−X13X33 = 0 , (37)

E2 :

(
−

X14(−X2
11X02X22+X01X21X2

12−X11X31X2
12+X2

11X12X32)

X11X12(X01X12−X11X02)
+ X24

)
X04

−
(X11X31X02X12−X01X11X12X32−X01X21X02X12+X01X11X02X22)X2

14
X12X11(X01X12−X11X02)

−X34X14 = 0 . (38)

If a double slider is among the synthesized mechanisms then a third (more
complicated compatability condition has to be fulfilled
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Now the four remaining poses are given via their image space coordinates:
Xij , j = 1 . . .4.

It would be important for the designer to know in advance if among the
synthesized mechanisms is a slider crank. This is the case if the following two
conditions are fulfilled:

E1 :

(
−

X13(−X2
11X02X22+X01X21X2

12−X11X31X2
12+X2

11X12X32)

X11X12(X01X12−X11X02)
+ X23

)
X03

−
(X11X31X02X12−X01X11X12X32−X01X21X02X12+X01X11X02X22)X2

13
X12X11(X01X12−X11X02)

−X13X33 = 0 , (37)

E2 :

(
−

X14(−X2
11X02X22+X01X21X2

12−X11X31X2
12+X2

11X12X32)

X11X12(X01X12−X11X02)
+ X24

)
X04

−
(X11X31X02X12−X01X11X12X32−X01X21X02X12+X01X11X02X22)X2

14
X12X11(X01X12−X11X02)

−X34X14 = 0 . (38)

If a double slider is among the synthesized mechanisms then a third (more
complicated compatability condition has to be fulfilled
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Some examples
General four-bar mechanism

C0 1 1
C1 2 6
C2 2 1

x 7,3821 9,1605
y 4,2434 1,1070

Table: Design parameter of mechanism 1

pose 1 pose 2 pose 3 pose 4
a -0,245005 -0,914683 -2,056744 -3,054058
b 0,523260 1,240571 2,235073 3,179009
φ 0.101061 0.116316 0.072202 -0.013746

Table: Given relative poses

solution 1 solution 2 solution 3 solution 4
C0 1 1 1 1
C1 -34.640483 1.999996 6.000008 -4.402381
C2 -29.947423 2.000000 0.999996 16.136008

x 18.091483 7.382096 9.160473 -3.697626
y 17.844191 4.243444 1.106973 13.877304

⇒ R 71.166696 5.830956 3.162275 2.366097

Table: Obtained results
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Example: spherical Burmester problem
Given five poses of a spherical system, construct a four-bar mechanism whose
endeffector passes through all five poses.

Spherical circle constraint equation:

SCS : 4Acx0x2−4Abx0x3 + 4Bax0x3−4Bcx3x2−4Cax0x2−4Cbx3x2

−2Aa−2Bb−2Cc + 4Bbx2
3 + 4Ccx2

2 + 4Aax2
3 + 4Aax2

2 + 4x2
1 Cc+

4x2
1 Bb−4x1Bcx0 + 4x1Cbx0−4x1Abx2−4x1Bax2−4x1Acx3

−4x1Cax3 + B2 + A2 + C2 + a2 + b2 + c2− r2 = 0. (39)
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DCS : wT

 I −2B 0
−2B I 0
0T 0T −1

w = 0 (40)

Without loss of generality we can assume that the fixed system Σ0 coincides
with one of the five given orientations.

DCS1 :=−2Bb−2Cc−2Aa + A2 + C2 + B2 + a2 + b2 + c2− r2 = 0. (41)

Now four simple equations are built by subtracting DCS1 from the other four
constraint equations:

M1j = DCSj −DCS1, j = 2, . . .5.

The four difference equations are bilinear in the unknowns A, B, C, a, b, c and
do not contain r .
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Solution algorithm:

Two of these equations, say M1,2 and M1,3 are used to solve linearly for two
of the unknowns, say a,b.

The solutions are substituted into M1,4 and M1,5. This yields two cubic
equations C1,C2.

The resultant of C1,C2 with respect to one of the remaining unknowns, say
B yields a univariate polynomial Q9 of degree nine in the unknown A.

Q9 factors into the solution polynomial Q6 of degree six and in three linear
factors.

Remarks:

the univariate can be computed without specifying the pose parameters!

Branch defect can also be easily detected with this approach!

Brunnthaler, Schrc̈ker, and H., Synthesis of spherical four-bar mechanisms using spherical kinematic mapping. Advances in
Robot Kinematics, 2006.

Schröcker and H., Kinematic mapping based assembly mode evaluation of spherical four-bar mechanisms. Proceedings of

IFToMM 2007, Besanccon, 2007.
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Example

x0 x1 x2 x3
Pose1 1 0 0 0
Pose2 0.37721 0.82336 0.38967 0.16722
Pose3 0.0078934 -0.041131 0.085164 -0.99549
Pose4 0.039457 0.77456 -0.60494 -0.18041
Pose5 -0.30301 -0.36492 0.85697 0.20157

Table: Input data for the example

This example yields six real dyads that can be combined to 15 real spherical four-bars.

Five input poses
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One solution four-bar Motion of the coordinate frame

Motion of a rigid body
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