

Compliant Mechanisms

Larry L. Howell Brigham Young University

BRIGHAM YOUNG UNIVERSITY COMPLIANT MECHANISMS RESEARCH

Compliant Mechanisms

A compliant mechanism gains some or all of its motion from the deflection of flexible members

Low cost Minimal assembly

Compact High precision

Reduced wear Harsh environments

Light weight
Tailored force response

Easily minaturized

One key thing to remember

Stiffness and strength are

the same thing

It is possible to make something both

Flexible

and

Strong

Pseudo-Rigid-Body Model

Larry L. Howell Brigham Young University

BRIGHAM YOUNG UNIVERSITY
COMPLIANT MECHANISMS RESEARCH

Pseudo-Rigid-Body Model

- Models compliant mechanisms as rigidbody mechanisms
- Allows use of decades of research in mechanical systems
- Unifies compliant mechanism and rigidbody mechanism theories

Example

Example

PRBM: Small-Length Flexural Pivot

Living Hinges

- Living hinge: extremely short and thin small-length flexural pivots
- PRBM is a pin joint at the center of the flexible segment.
- If other compliant elements are present, then can ignore spring for living hinge

PRBM: Fixed-Pinned

Practical Implementation

PRBM: Fixed-Guided

Example

Exercise

- (a) Sketch the PRBM
- (b) Calculate the lengths of the links
- (c) Write equations for spring constants symbolically
- (d) Calculate numerical values of spring constants

Assume dimensions in mm and material is Aluminum (E=72 GPa)

I=bh3/12

PRBM: Pinned-pinned

PRBM: Pinned-pinned

Other Pseudo-rigid-body Models

- Pure moment load
- Initially curved beam
- Other

Exercise

Example: Bistable Switch

Example

Example

- The pseudo-rigid-body model is a four-bar mechanism
- The potential energy is a function of the deflection of the torsional spring
- PRBM provides simple model that allows the design of needed position and force control

Position Analysis: 4-bar

The lagging (crossed) form is determined by $-\psi$ and $-\lambda$, using the second solutions from the $\cos^{-1}(\cdot)$ equations.

$$\delta = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos\theta_2}; \qquad \beta = \cos^{-1}\frac{r_1^2 + \delta^2 - r_2^2}{2r_1\delta}$$

$$\psi = \cos^{-1} \frac{r_3^2 + \delta^2 - r_4^2}{2r_3\delta}$$
; $\lambda = \cos^{-1} \frac{r_4^2 + \delta^2 - r_3^2}{2r_4\delta}$

For
$$0 \le \theta_2 \le \pi$$

$$\theta_3 = \psi - (\beta - \theta_1)$$
; $\theta_4 = \pi - \lambda - (\beta - \theta_1)$

For
$$\pi \leq \theta_2 \leq 2\pi$$

$$\theta_3 = \psi + (\beta + \theta_1)$$
, $\theta_4 = \pi - \lambda + (\beta + \theta_1)$

also

$$\gamma = \pm \cos^{-1} \frac{r_3^2 + r_4^2 - \delta^2}{2r_3 r_4}$$

$$x_p = r_2 \cos \theta_2 + a_3 \cos \theta_3 - b_3 \sin \theta_3$$

$$y_p = r_2 \sin \theta_2 + a_3 \sin \theta_3 + b_3 \cos \theta_3$$

Parametric Models

- Powerful design tool
- Analyze many different designs quickly
- Integration with optimization tools
- Convert between different configurations

Example: Rocker Switch

 Same parametric models apply to move from a toggle switch to a rocker switch

PRBM with CAE tools

- Spreadsheets, Matlab, etc
 - Switch example

PRBM with CAE tools

- Multi-body dynamics tools (ADAMS, etc.)
 - Examples
 - folded-beam suspension
 - switch

Example: Switch

Rocker Switch

So why compliant mechanisms now?

Computational capabilities

Materials and processes

Design methods

and...

New needs

High performance

weight

· friction and wear

precision

Size domains

meso

• micro

nano

Critical applications

biomedical

space

economic

Cost

part count

assembly

manufacturing

New motions

morphing

• lamina emergent

adaptive

High performance

- weight
- friction and wear
- precision

Size domains

- meso
- micro
- nano

Critical applications

- biomedical
- space
- economic

Co

•

•

Cost

- part count
- assembly
- manufacturing

New motions

- morphing
- lamina emergent
- adaptive

21st Century Compliant Mechanisms

Biomedical Implants

FlexBAC

Biomedical Implants

FlexBAC

Microelectromechanical Systems (MEMS)

Engineering Tools of Scientific Discovery

The Grand Challenges of Engineering

Lamina Emergent Mechanisms

What do you think is next?

Hypercompact Mechanisms

Adaptive Morphing Systems

Disruptive Innovations

More Human-like Implants

Nanomachines

Advanced Materials

Human-Robot Interactions

Products using Local Materials

Resources

Available soon

Acknowledgements

National Science Foundation
Crocker Spinal Technologies, Inc.
Nanolnjection Technologies, LLC
Compliant Mechanisms Research Group (CMR)
BYU Applied Biomechanics Engineering Laboratory (BABEL)
BYU Department of Microbiology & Molecular Biology
Collaborators:

- Prof. Spencer Magleby
- · Prof. Brian Jensen
- · Prof. Anton Bowden
- · Prof. Sandra Burnett

CROCKER

Spinal Technologies, Inc.

Thank you!

