Kinestatic Analyses of Mechanisms with Compliant Elements

Carl Crane

How can such a simple mechanism have such a high order solution?

Tensegrity structures

- comprised of struts in compression and ties in tension

Self-deployable tensegrity structures

- certain ties replaced by elastic members

Center for Intelligent Machines and Robotics
College of Engineering

Can we solve the basic problem?

- determine in closed-form all equilibrium configurations of a self-deployable tensegrity structure given:
- strut lengths
- tie lengths
- free lengths and spring constant of elastic members
- any applied loads
- Stern [1999] performed closed-form analysis of unloaded symmetric systems
- 2 solutions, n=3.. 6
- Correa [2001] obtained numerical
 solution for general loaded systems
- numerical convergence to a solution

Let's start with a warm up problem.

Planar 2-strut 2-spring tensegrity structure

- given:
- strut lengths a_{12}, a_{34}
- tie lengths $\mathrm{a}_{41}, \mathrm{a}_{23}$
- spring parameters $k_{1}, L_{01}, k_{2}, L_{02}$
- determine:
- all equilibrium poses

Planar 2-strut 2-spring tensegrity structure

- the struts and non-elastic ties form a simple 4-bar mechanism
- pose can be defined by one parameter
- several descriptive parameters tried
- analysis was performed using an energy method and using L_{1} as the descriptive parameter

Center for Intelligent Machines and Robotics College of Engineering

Geometric constraints

$$
\mathrm{AL}_{2}^{4}+\mathrm{BL}_{2}^{2}+\mathrm{C}=0
$$

where

$$
A=L_{1}{ }^{2}, B=L_{1}^{4}+B_{2} L_{1}^{2}+B_{0}, C=C_{2} L_{1}^{2}+C_{0}
$$

and where
B_{2}, B_{0}, C_{2}, and C_{0} are expressed in terms of known quantities

Verification of geometric constraint equation

Figure 7: Possible Configurations for Numerical Example

Potential energy constraint

- at equilibrium, the potential energy in the springs will be a minimum

$$
U=1 / 2 k_{1}\left(L_{1}-L_{01}\right)^{2}+1 / 2 k_{2}\left(L_{2}-L_{02}\right)^{2}
$$

- at a minimum potential energy state,

$$
\begin{equation*}
\frac{\mathrm{dU}}{\mathrm{dL}_{1}}=\mathrm{k}_{1}\left(\mathrm{~L}_{1}-\mathrm{L}_{01}\right)+\mathrm{k}_{2}\left(\mathrm{~L}_{2}-\mathrm{L}_{02}\right) \frac{\mathrm{dL}_{2}}{\mathrm{dL}_{1}}=0 \tag{17}
\end{equation*}
$$

- $\mathrm{dL}_{2} / \mathrm{dL}_{1}$ can be obtained via implicit differentiation of the geometry constraint (13) as

$$
\begin{equation*}
\frac{\mathrm{dL}_{2}}{\mathrm{dL}_{1}}=\frac{-\mathrm{L}_{1}\left[\mathrm{~L}_{2}{ }^{2}\left(\mathrm{~L}_{2}{ }^{2}+2 \mathrm{~L}_{1}{ }^{2}-\mathrm{a}_{23}{ }^{2}-\mathrm{a}_{41}{ }^{2}-\mathrm{a}_{34}{ }^{2}-\mathrm{a}_{12}{ }^{2}\right)+\left(\mathrm{a}_{12}{ }^{2}-\mathrm{a}_{23}{ }^{2}\right)\left(\mathrm{a}_{41}{ }^{2}-\mathrm{a}_{34}{ }^{2}\right)\right]}{\left.\mathrm{L}_{2}\left[\mathrm{~L}_{1}{ }^{2}\left(\mathrm{~L}_{1}{ }^{2}+2 \mathrm{~L}_{2}{ }^{2}-\mathrm{a}_{23}{ }^{2}-\mathrm{a}_{41}{ }^{2}-\mathrm{a}_{34}{ }^{2}-\mathrm{a}_{12}{ }^{2}\right)+\left(\mathrm{a}_{12}{ }^{2}-\mathrm{a}_{41}{ }^{2}\right)\left(\mathrm{a}_{23}{ }^{2}-\mathrm{a}_{34}{ }^{2}\right)\right)\right]} \tag{18}
\end{equation*}
$$

Geometry and Potential energy constraints

- geometry constraint

$$
\begin{equation*}
A L_{2}^{4}+B L_{2}^{2}+C=0 \tag{13}
\end{equation*}
$$

- potential energy constraint

$$
\begin{equation*}
D L_{2}^{5}+E L_{2}^{4}+F L_{2}^{3}+G L_{2}{ }^{2}+H L_{2}+J=0 \tag{19}
\end{equation*}
$$

where the coefficients D through J are polynomials in L_{1}

- Sylvester's elimination method can be used to identify the condition that the coefficients must satisfy in order for (13) and (19) to have common roots for L_{2}
- multiply (13) by $\mathrm{L}_{2}, \mathrm{~L}_{2}{ }^{2}, \mathrm{~L}_{2}{ }^{3}, \mathrm{~L}_{2}{ }^{4}$
- multiply (19) by $L_{2}, L_{2}{ }^{2}, L_{2}{ }^{3}$

Sylvester's elimination

$$
\left[\begin{array}{ccccccccc}
0 & 0 & 0 & \mathrm{D} & \mathrm{E} & \mathrm{~F} & \mathrm{G} & \mathrm{H} & \mathrm{~J} \\
0 & 0 & 0 & 0 & \mathrm{~A} & 0 & \mathrm{~B} & 0 & \mathrm{C} \\
0 & 0 & 0 & \mathrm{~A} & 0 & \mathrm{~B} & 0 & \mathrm{C} & 0 \\
0 & 0 & \mathrm{D} & \mathrm{E} & \mathrm{~F} & \mathrm{G} & \mathrm{H} & \mathrm{~J} & 0 \\
0 & 0 & \mathrm{~A} & 0 & \mathrm{~B} & 0 & \mathrm{C} & 0 & 0 \\
0 & \mathrm{D} & \mathrm{E} & \mathrm{~F} & \mathrm{G} & \mathrm{H} & \mathrm{~J} & 0 & 0 \\
0 & \mathrm{~A} & 0 & \mathrm{~B} & 0 & \mathrm{C} & 0 & 0 & 0 \\
\mathrm{D} & \mathrm{E} & \mathrm{~F} & \mathrm{G} & \mathrm{H} & \mathrm{~J} & 0 & 0 & 0 \\
\mathrm{~A} & 0 & \mathrm{~B} & 0 & \mathrm{C} & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathrm{L}_{2}{ }^{8} \\
\mathrm{~L}_{2}{ }^{7} \\
\mathrm{~L}_{2}{ }^{6} \\
\mathrm{~L}_{2}{ }^{5} \\
\mathrm{~L}_{2}{ }^{4} \\
\mathrm{~L}_{2}{ }^{3} \\
\mathrm{~L}_{2}{ }^{2} \\
\mathrm{~L}_{2} \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- determinant of coefficient matrix must equal zero which yields a $28^{\text {th }}$ degree polynomial in L_{1}

Numerical example

- given:

$$
\begin{array}{ll}
-a_{12}=3 \mathrm{in} . & a_{34}=3.5 \mathrm{in} . \\
-a_{41}=4 \mathrm{in} . & a_{23}=2 \mathrm{in} . \\
-\mathrm{L}_{01}=0.5 \mathrm{in} . & k_{1}=4 \mathrm{lbf} / \mathrm{in} . \\
-\mathrm{L}_{02}=1 \mathrm{in} . & k_{2}=2.5 \mathrm{lbf} / \mathrm{in} .
\end{array}
$$

- find L_{1} and L_{2} at equilibrium

Numerical Example

- results
- coefficients of $28^{\text {th }}$ degree polynomial in L_{1} obtained
- 8 real roots for L_{1} with corresponding values for L_{2}
- all 20 complex solution pairs $\left(L_{1}, L_{2}\right)$ satisfied equations (13) and (19), i.e. geometry constraint and $\mathrm{dU} / \mathrm{dL}_{1}=0$
- 4 cases correspond to minimum potential energy

Case	L_{1}, in.	L_{2}, in.
1	-5.4854	2.3333
2	-5.3222	-2.9009
3	-1.7406	-1.4952
4	-1.5760	1.8699
5	1.6280	1.7089
6	1.8628	-1.3544
7	5.1289	-3.2880
8	5.4759	2.3938

Center for Intelligent Machines and Robotics College of Engineering

Numerical Example

3

spring in compression with a negative spring length

2

spring in tension

Let's look at a second simple problem.

- In many papers involving compliant elements, researchers assume that their springs have a free length of zero.
- How much more complicated does the problem become if the spring free lengths are not zero?

Center for Intelligent Machines and Robotics College of Engineering

Problem Statement

- given:

$$
\begin{aligned}
& -L_{12}, p_{3 x}, p_{3 y} \\
& -L_{45}, p_{6 x}, p_{6 y} \\
& -L_{3} \\
& -k_{1}, L_{01} \\
& -k_{2}, L_{02}
\end{aligned}
$$

$$
\begin{aligned}
& 3 \text { cases } \\
& \text { 1. } L_{01}=L_{02}=0 \\
& \text { 2. } \\
& L_{01} \neq 0, L_{02}=0 \\
& \text { 3. }
\end{aligned} L_{01} \neq 0, L_{02} \neq 0 \quad 62
$$

$$
x_{2}
$$

- find:
$-\gamma_{1}$ and γ_{2} for all equilibrium configurations

3 cases

$$
\mathrm{L}_{3}
$$

Case 1: Numerical Example

$$
\begin{aligned}
& L_{12}=6 \mathrm{~m}, \\
& p_{3 x}=-1.25 \mathrm{~m}, \mathrm{p}_{3 \mathrm{y}}=6.887489 \mathrm{~m}, \\
& \mathrm{~L}_{45}=5.5 \mathrm{~m}, \\
& \mathrm{p}_{6 \mathrm{x}}=-1.14 \mathrm{~m}, \mathrm{p}_{6 y}=-3.13 \mathrm{~m} \\
& \mathrm{~L}_{3}=10 \mathrm{~m} \\
& \mathrm{k}_{1}=2 \mathrm{~N} / \mathrm{m}, \mathrm{~L}_{01}=0 \\
& \mathrm{k}_{2}=3.5 \mathrm{~N} / \mathrm{m}, \mathrm{~L}_{02}=0
\end{aligned}
$$

Solution \#	γ_{1}, radians	γ_{2}, radians
1	1.1787	-1.1286
2	1.3704	2.1649
3	-1.7201	-0.4096
4	-2.0088	2.3924
5	-2.7032 $+1.1498 ~ i$	-2.6012 +2.9712 i
	-2.7032	-2.6012
	-1.1498 i	-2.9712 i

case 1

Case 2: $\mathrm{L}_{02}=0, \mathrm{~L}_{01} \neq 0$

$$
\begin{gathered}
\left(E_{1} x_{2}^{2}+E_{2} x_{2}+E_{3}\right) d_{1}+E_{4} x_{2}^{2}+E_{5} x_{2}+E_{6}=0 \\
\left(F_{1} x_{2}^{2}+F_{2} x_{2}+F_{3}\right) d_{1}+F_{4} x_{2}^{2}+F_{5} x_{2}+F_{6}=0 \\
\left(G_{1} x_{2}^{2}+G_{2} x_{2}+G_{3}\right) d_{1}^{2}+G_{4} x_{2}^{2}+G_{5} x_{2}+G_{6}=0
\end{gathered}
$$

- Sylvester's Solution method
- First two equations are multiplied by $\mathrm{x}_{2}, \mathrm{~d}_{1}$, and $\mathrm{d}_{1} \mathrm{x}_{2}, \mathrm{~d}_{1}{ }^{2}$ and $d_{1}{ }^{2} x_{2}$. Third equation multiplied by x_{2}, d_{1}, and $d_{1} x_{2}$.
- Results in 16 'homogeneous' equations in 16 unknowns.
- The determinant of the coefficient matrix must equal zero.
- Resulted in a $32^{\text {nd }}$ degree polynomial in x_{1}.
- Divided by $\left(1+x_{1}^{2}\right)^{4}$ and by square of the $2^{\text {nd }}$ degree polynomial corresponding to $d_{2}=0$.

$20^{\text {th }}$ degree solution

Case 2: Numerical Example

- $\mathrm{L}_{01}=2.3 \mathrm{~m}, 8$ real solutions

case 1

case 2

case 3

case 7

case 4

case 8

Center for Intelligent Machines and Robotics College of Engineering

Case 3: $L_{02} \neq 0, L_{01} \neq 0$

- Will obtain 4 equations of the form

$$
\begin{gather*}
\left(C_{1} x_{2}^{2}+C_{2} x_{2}+C_{3}\right)+\left(C_{4} x_{2}^{2}+C_{5} x_{2}+C_{6}\right) d_{2 i} \tag{1}\\
\quad+\left(C_{7} x_{2}^{2}+C_{8} x_{2}+C_{9}\right) d_{1 i}=0 \\
\left(D_{1} x_{2}^{2}+D_{2} x_{2}+D_{3}\right)+\left(D_{4} x_{2}^{2}+D_{5} x_{2}+D_{6}\right) d_{2 i} \tag{2}\\
\quad+\left(D_{7} x_{2}^{2}+D_{8} x_{2}+D_{9}\right) d_{1 i}=0 \\
\left(M_{1} x_{2}^{2}+M_{2} x_{2}+M_{3}\right)+\left(M_{4} x_{2}^{2}+M_{5} x_{2}+M_{6}\right) d_{1 i}^{2}=0 \\
\left(N_{1} x_{2}^{2}+N_{2} x_{2}+N_{3}\right)+\left(N_{4} x_{2}^{2}+N_{5} x_{2}+N_{6}\right) d_{2 i}^{2}=0 \tag{4}
\end{gather*}
$$

where the coefficients are functions of x_{1}

Case 3: $\mathrm{L}_{02} \neq 0, \mathrm{~L}_{01} \neq 0$

- Multiply Equations (1), (2) by
$-\left\{1, d_{1 i}, d_{2 i}, d_{1 i}^{2}, d_{2 i}^{2}, d_{1 i} d_{2 i}, d_{1 i}^{2} d_{2 i}, d_{1 i} d_{2 i}^{2}\right\} *\left\{1, x_{2}\right\}$
- Multiply Equation (3) by
$-\left\{1, d_{1 i}, d_{2 i}, d_{1 i} d_{2 i}, d_{2 i}^{2}\right\} *\left\{1, x_{2}\right\}$
- Multiply Equation (4) by
$-\left\{1, d_{1 i}, d_{2 i}, d_{1 i} d_{2 i}, d_{1 i}^{2}\right\} *\left\{1, x_{2}\right\}$
- Total Equations = 52
- Unknowns
$-\left\{1, d_{1 i}, d_{2 i}, d_{1 i}{ }^{2}, d_{2 i}{ }^{2}, d_{1 i} d_{2 i}, d_{1 i}{ }^{2} d_{2 i}, d_{1 i} d_{2 i}{ }^{2}, d_{1 i}{ }^{3}, d_{2 i}{ }^{3}\right.$, $\left.\mathrm{d}_{1 \mathrm{i}}{ }^{3} \mathrm{~d}_{2 \mathrm{i}}, \mathrm{d}_{1 i} \mathrm{~d}_{2 \mathrm{i}}{ }^{3}, \mathrm{~d}_{1 \mathrm{i}} \mathrm{d}_{2 \mathrm{i}}{ }^{3}\right\}^{*}\left\{\mathrm{x}_{2}{ }^{3}, \mathrm{x}_{2}{ }^{2}, \mathrm{x}_{2}, 1\right\}$

Case 3: $L_{02} \neq 0, L_{01} \neq 0$

- Expansion of $|\mathbf{M}|=0$ yielded a $104^{\text {th }}$ degree polynomial in x_{1}.
- This can be divided by $\left(1+x_{1}^{2}\right)^{13}$ to get $78^{\text {th }}$ degree polynomial in x_{1}.
- Of the 78 solutions 16 were extraneous.
- 62 solutions were obtained.
- Numerical continuation method ${ }^{*}$ found 88 solutions ($62+26$ circular points).
* PHCpack software, Jan Verschelde, U. Illinois, Chicago

Case 3: $L_{02} \neq 0, L_{01} \neq 0$

- $\mathrm{L}_{01}=5.1 \mathrm{~m}, \mathrm{~L}_{02}=6.6309 \mathrm{~m}$
- Out of the 62 solutions -38 were complex and 24 were real
- All the solutions satisfy the four equations

Case 3: Real Solutions - I

Case 3: Real Solutions - II

Conclusion

- Case 1, $\mathrm{L}_{01}=\mathrm{L}_{02}=0$
- 6 solutions
- Case 2: $\mathrm{L}_{02}=0, \mathrm{~L}_{01} \neq 0$
- 20 solutions
- Case 3: $\mathrm{L}_{02} \neq 0, \mathrm{~L}_{01} \neq 0$
- 62 solutions

Back to the primary problem.

- given:
- strut lengths
- top tie lengths
- bottom tie lengths
- spring constant and free length of side ties
- find:
- all equilibrium configurations

How to structure the problem?

First, attempt to solve the problem when all the spring free lengths equal zero.

Problem Formulation

- given: $\mathrm{A}_{\mathrm{j}}, \mathrm{a}_{\mathrm{j}}, \mathrm{k}_{\mathrm{j}}$
- find: $X_{j}, Y_{j}, Z_{j}, X_{j}, y_{j}, Z_{j}$ such that

$$
\begin{aligned}
& \text { umad ank ind (} \\
&)^{\text {m }}(\\
& \text {) (} \\
& \text {)) }
\end{aligned}
$$

is an extremum subject to

)
)

$$
\text { for } \mathrm{j}=1 \text {..n . }
$$

This formulation was selected to avoid any need to use tan half-angle substitutions to convert trigonometric functions into polynomials.

Example

Three strut tensegrity where spring free lengths equal zero.

There are 9 unknowns, i.e. $X_{j}, Y_{j}, Z_{j}, j=1 . .3$.
There are 9 constraint equations:

Numerical Example

Three strut tensegrity

- $a_{1}=10, a_{2}=12.3, a_{3}=15 \mathrm{~cm}$
- $\mathrm{s}_{1}=20, \mathrm{~s}_{2}=23, \mathrm{~s}_{3}=10.5 \mathrm{~cm}$
- $\mathrm{k}_{1}=3.8, \mathrm{k}_{2}=3, \mathrm{k}_{3}=4.3 \mathrm{~N} / \mathrm{cm}$
- The homotopy continuation method* was used to solve the set of 9 equations in 9 unknowns.
- 10 real configurations were obtained
 which satisfy the 9 equations (160 complex solutions obtained)
* PHCpack, http://www.math.uic.edu/~jan/download.html Jan Verschelde, Univ. of Illinois at Chicago

Stability Analysis

$2^{\text {nd }}$ Order Analysis

- A $2^{\text {nd }}$ order analysis was conducted to classify the real solutions as
- stable equilibrium
- unstable equilibrium
- neutral equilibrium
- a small perturbation will continuously deform the structure to another neutral equilibrium state
- have a statically balanced mechanism
- The equilibrium study becomes the examination of the positive definiteness of the Hessian matrix of the Lagrangian function w.

Numerical Example (cont)

stability analysis

- of the 10 real solutions
- 1 is unstable (negative definite Hessian)
- 7 are directionally stable (indefinite Hessian)
- 2 are stable (positive definite Hessian)

unstable case

Numerical Example (cont)

stability analysis

- of the 10 real solutions
- 1 is unstable (negative definite Hessian)
- 7 are directionally stable (indefinite Hessian)
- 2 are stable (positive definite Hessian)
stable cases

- $28^{\text {th }}$ degree univariate polynomial
- numerical example had 8 real roots, 4 of which were stable equilibrium
- 1 of the 4 stable equilibrium had both spring lengths >0

- Case $1, \mathrm{~L}_{01}=\mathrm{L}_{02}=0$
- 6 solutions, 4 real
- Case 2: $\mathrm{L}_{02}=0, \mathrm{~L}_{01} \neq 0$
- 20 solutions, 8 real
- Case 3: $\mathrm{L}_{02} \neq 0, \mathrm{~L}_{01} \neq 0$
- 62 solutions, 24 real
- problem formulation has extraneous roots

- free lengths equal zero
- 9 equations in 9 unknowns
- continuation method yielded 10 real and 160 complex solutions
- 2 cases were in stable equilibrium

