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How can such a simple mechanism 
have such a high order solution? 
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Tensegrity structures 

•  comprised of struts in compression and ties in 
tension 
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Self-deployable tensegrity structures 

•  certain ties replaced by elastic members 
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Can we solve the basic problem? 

•  determine in closed-form all equilibrium configurations of 
a self-deployable tensegrity structure given: 
–  strut lengths 
–  tie lengths 
–  free lengths and spring constant 

of elastic members 
–  any applied loads 

•  Stern [1999] performed closed-form 
analysis of unloaded symmetric systems 
–  2 solutions, n=3..6 

•  Correa [2001] obtained numerical 
solution for general loaded systems 
–  numerical convergence to a solution 
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Let’s start with a warm up problem. 

•  given: 
– strut lengths a12, a34 
–  tie lengths a41, a23 
– spring parameters 

k1, L01, k2, L02 
•  determine: 

– all equilibrium poses 
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Planar 2-strut 2-spring tensegrity structure 
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Planar 2-strut 2-spring tensegrity structure 

•  the struts and non-elastic ties form a simple 4-bar 
mechanism 

•  pose can be defined by one parameter 
–  several descriptive parameters tried 

•  analysis was performed using 
an energy method and 
using L1 as the descriptive 
parameter 
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Geometric constraints 

 where 

 and where 
  B2, B0, C2, and C0 are expressed in terms of 

 known quantities 

A L2
4 + B L2

2 + C = 0 

A = L1
2 , B = L1

4 + B2 L1
2 + B0, C = C2 L1

2 + C0 



Center for Intelligent Machines and Robotics 
College of Engineering 

L2 

4 

4 

4 

4 1 

1 1 

1 

2 2 

2 2 

3 

3 

3 

3 

L1 

L1 L1 

L1 

L2 

L2 

L2 

Figure 7:  Possible Configurations for Numerical Example 

Verification of geometric constraint equation 
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Potential energy constraint 

•  at equilibrium, the potential energy in the springs will be 
a minimum 

U = ½ k1 (L1-L01)2 + ½ k2 (L2-L02)2 

•  at a minimum potential energy state, 

•  dL2/dL1 can be obtained via implicit differentiation of the 
geometry constraint (13) as 

(17) 

(18) 
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Geometry and Potential energy constraints 

•  geometry constraint 

•  potential energy constraint 

D L2
5 + E L2

4 + F L2
3 + G L2

2 + H L2 + J = 0   (19) 

 where the coefficients D through J are polynomials in L1 

•  Sylvester’s elimination method can be used to identify the 
condition that the coefficients must satisfy in order for (13) 
and (19) to have common roots for L2 
–  multiply (13) by L2, L2

2, L2
3, L2

4 
–  multiply (19) by L2, L2

2, L2
3 

–  obtain 9 ‘homogeneous’ equations in 9 unknowns 

A L2
4 + B L2

2 + C = 0      (13) 
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Sylvester’s elimination 

•  determinant of coefficient matrix must 
equal zero which yields a 28th degree 
polynomial in L1 
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Numerical example 

•  given: 
–  a12 = 3 in. a34 = 3.5 in. 
–  a41 = 4 in. a23 = 2 in.  
–  L01 = 0.5 in. k1 = 4 lbf/in.  
–  L02 = 1 in. k2 = 2.5 lbf/in.  

•  find L1 and L2 at equilibrium 
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Numerical Example 

•  results 
–  coefficients of 28th degree 

polynomial in L1 obtained 

–  8 real roots for L1 with 
corresponding values for L2 

–  all 20 complex solution 
pairs (L1, L2) satisfied 
equations (13) and (19), i.e. 
geometry constraint and 
dU/dL1 = 0 

–  4 cases correspond to 
minimum potential energy 

Case L1, in. L2, in. 

1 -5.4854 2.3333 

2 -5.3222 -2.9009 

3 -1.7406 -1.4952 

4 -1.5760 1.8699 

5 1.6280 1.7089 

6 1.8628 -1.3544 

7 5.1289 -3.2880 

8 5.4759 2.3938 
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spring in compression with a 
negative spring length 

spring in tension 

4 

4 4 

4 1 

1 1 

1 

2 

2 

2 

2 

3 

3 
3 

3 

Case 3 Case 4 

Case 5 Case 6 

Numerical Example 



Center for Intelligent Machines and Robotics 
College of Engineering 

Let’s look at a second simple problem. 

•  In many papers involving compliant elements, 
researchers assume that their springs have a free length 
of zero. 

•  How much more complicated 
does the problem become if the 
spring free lengths are not zero? 
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Problem Statement 

•  given: 
– L12, p3x, p3y 
– L45, p6x, p6y 
– L3 
– k1, L01 
– k2, L02 

•  find: 
– γ1 and γ2 for all equilibrium 

configurations 

6 
20 
62 
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Case 1: Numerical Example 
L12 = 6 m, 
p3x = -1.25 m, p3y = 6.887489 m, 
L45 = 5.5 m,  
p6x = -1.14 m, p6y = -3.13 m 
L3 = 10 m 
k1 = 2 N/m, L01 = 0,  
k2 = 3.5 N/m, L02 = 0 

Solution # γ1, radians γ2, radians 

1 1.1787 −1.1286 

2 1.3704 2.1649 

3 −1.7201 −0.4096 

4 −2.0088 2.3924 

5 -2.7032 
+ 1.1498 i 

-2.6012 
+ 2.9712 i 

6 -2.7032 
– 1.1498 i 

-2.6012 
- 2.9712 i 

case	  4 case	  3 

case	  2 case	  1 
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20th degree solution 

Case 2: L02 = 0, L01 ≠ 0 

(E1x2
2 + E2x2 + E3) d1 + E4x2

2 + E5x2 + E6 = 0 
(F1x2

2 + F2x2 + F3) d1 + F4x2
2 + F5x2 + F6 = 0 

(G1x2
2 + G2x2 + G3) d1

2 + G4x2
2 + G5x2 + G6 = 0 

•  Sylvester’s Solution method 
–  First two equations are multiplied by x2, d1, and d1x2, d1

2 
and d1

2x2.  Third equation multiplied by x2, d1, and d1x2. 
– Results in 16 ‘homogeneous’ equations in 16 unknowns. 
–  The determinant of the coefficient matrix must equal zero. 
– Resulted in a 32nd degree polynomial in x1. 
– Divided by (1+x1

2)4  and by square of the 2nd degree 
polynomial corresponding to d2 = 0.  

18 
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Case 2: Numerical Example 

•  L01 = 2.3 m, 8 real solutions 

19 

case	  3 case	  4 

case	  5 case	  6 case	  7 case	  8 

case	  1 case	  2 
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Case 3: L02 ≠ 0, L01 ≠ 0 

•  Will obtain 4 equations of the form 
(C1x2

2 + C2x2 + C3) + (C4x2
2 + C5x2 + C6) d2i 

 + (C7x2
2 + C8x2 + C9) d1i = 0 

 (D1x2
2 + D2x2 + D3) + (D4x2

2 + D5x2 + D6) d2i 
 + (D7x2

2 + D8x2 + D9) d1i = 0 

 (M1x2
2 + M2x2 + M3) + (M4x2

2 + M5x2 + M6) d1i
2 = 0 

 (N1x2
2 + N2x2 + N3) + (N4x2

2 + N5x2 + N6) d2i
2 = 0 

 where the coefficients are functions of x1 

20 
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Case 3: L02 ≠ 0, L01 ≠ 0 

•  Multiply Equations (1), (2) by  
–  {1, d1i, d2i, d1i

2, d2i
2, d1id2i, d1i

2d2i, d1id2i
2} *{1,x2} 

•  Multiply Equation (3) by  
–  {1 , d1i, d2i, d1id2i, d2i

2} *{1,x2} 

•  Multiply Equation (4) by  
–  {1 , d1i, d2i, d1id2i, d1i

2} *{1,x2} 

•  Total Equations = 52 
•  Unknowns 

–  {1, d1i, d2i, d1i
2, d2i

2, d1id2i, d1i
2d2i , d1id2i

2 , d1i
3 , d2i

3, 
d1i

3d2i , d1id2i
3, d1id2i

3}*{x2
3, x2

2, x2, 1} 

21 
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Case 3: L02 ≠ 0, L01 ≠ 0 

•  Expansion of |M| = 0 yielded a 104th degree 
polynomial in x1. 

•  This can be divided by (1+x1
2)13 to get 78th 

degree polynomial in x1. 

•  Of the 78 solutions 16 were extraneous. 
•  62 solutions were obtained. 
•  Numerical continuation method* found 88 

solutions (62 + 26 circular points). 
* PHCpack software, Jan Verschelde, U. Illinois, Chicago 

22 
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Case 3: L02 ≠ 0, L01 ≠ 0 

•  L01= 5.1 m, L02 = 6.6309 m 
•  Out of the 62 solutions – 38 were complex and 

24 were real 
•  All the solutions satisfy the four equations 
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Case 3: Real Solutions - I 
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Case 3: Real Solutions - II 
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Conclusion 

•  Case 1, L01 = L02 = 0 
– 6 solutions 

•  Case 2: L02 = 0, L01 ≠ 0 
– 20 solutions 

•  Case 3: L02 ≠ 0, L01 ≠ 0 
– 62 solutions 

26 
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Back to the primary problem. 

•  given: 
– strut lengths 
–  top tie lengths 
– bottom tie lengths 
– spring constant and free length 

of side ties 
•  find: 

– all equilibrium configurations 
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How to structure the problem? 

First, attempt to solve the problem when all the spring free lengths equal zero. 



Problem Formulation 

•  given:  Aj, aj, kj 
•  find:  Xj, Yj, Zj, xj, yj, zj 
 such that 

 is an extremum subject to 

 for j = 1 ..n . 
29 This formulation was selected to avoid any need to use tan half-angle 

substitutions to convert trigonometric functions into polynomials.   



Example 
Three strut tensegrity where spring free lengths equal zero. 

30 

There are 9 unknowns, i.e. Xj, Yj, Zj, j=1..3 . 

There are 9 constraint equations: 
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Numerical Example 
Three strut tensegrity 

31 

•  a1=10, a2=12.3, a3 = 15 cm 
•  s1 = 20, s2 = 23, s3 = 10.5 cm 
•  k1 = 3.8, k2 = 3, k3 = 4.3 N/cm 

•  The homotopy continuation method* 
was used to solve the set of 9 
equations in 9 unknowns. 

•  10 real configurations were obtained 
which satisfy the 9 equations (160 
complex solutions obtained) 

* PHCpack , http://www.math.uic.edu/~jan/download.html 
 Jan Verschelde, Univ. of Illinois at Chicago 
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Stability Analysis 
2nd Order Analysis 

•  A 2nd order analysis was conducted to classify 
the real solutions as 
– stable equilibrium 
– unstable equilibrium 
– neutral equilibrium 

•  a small perturbation will continuously deform the structure to 
another neutral equilibrium state 

•  have a statically balanced mechanism 

•  The equilibrium study becomes the examination 
of the positive definiteness of the Hessian matrix 
of the Lagrangian function w. 

32 
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Numerical Example (cont) 
stability analysis 

•  of the 10 real solutions 
– 1 is unstable (negative definite Hessian) 
– 7 are directionally stable (indefinite Hessian) 
– 2 are stable (positive definite Hessian) 

33 

unstable case 
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Numerical Example (cont) 
stability analysis 

•  of the 10 real solutions 
– 1 is unstable (negative definite Hessian) 
– 7 are directionally stable (indefinite Hessian) 
– 2 are stable (positive definite Hessian) 

34 

stable cases 
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•  28th degree univariate 
polynomial 

•  numerical example had 
8 real roots, 4 of which 
were stable equilibrium 

•  1 of the 4 stable 
equilibrium had both 
spring lengths > 0 

•  Case 1, L01 = L02 = 0 
–  6 solutions, 4 real 

•  Case 2: L02 = 0, L01 ≠ 0 
–  20 solutions, 8 real 

•  Case 3: L02 ≠ 0, L01 ≠ 0 
–  62 solutions, 24 real 
–  problem formulation has 

extraneous roots 

•  free lengths equal 
zero 

•  9 equations in 9 
unknowns 

•  continuation 
method yielded 10 
real and 160 
complex solutions 

•  2 cases were in 
stable equilibrium 


