Kinestatic Analyses of Mechanisms with Compliant Elements

Carl Crane

How can such a simple mechanism have such a high order solution?

Tensegrity structures

comprised of struts in compression and ties in tension

Self-deployable tensegrity structures

certain ties replaced by elastic members

Can we solve the basic problem?

- determine in closed-form all equilibrium configurations of a self-deployable tensegrity structure given:
 - strut lengths
 - tie lengths

UNIVERSITY of FI OR IDA

- free lengths and spring constant of elastic members
- any applied loads
- Stern [1999] performed closed-form analysis of unloaded symmetric systems
 - 2 solutions, n=3..6
- Correa [2001] obtained numerical solution for general loaded systems
 - numerical convergence to a solution

Let's start with a warm up problem.

Planar 2-strut 2-spring tensegrity structure

- given:
 - strut lengths a₁₂, a₃₄
 - tie lengths a_{41} , a_{23}
 - spring parameters
 k₁, L₀₁, k₂, L₀₂
- determine:
 - all equilibrium poses

UF FLORIDA

Planar 2-strut 2-spring tensegrity structure

- the struts and non-elastic ties form a simple 4-bar mechanism
- pose can be defined by one parameter
 - several descriptive parameters tried
- analysis was performed using an energy method and using L₁ as the descriptive parameter

Geometric constraints

$$AL_2^4 + BL_2^2 + C = 0$$

where

$$A = L_1^2$$
, $B = L_1^4 + B_2 L_1^2 + B_0$, $C = C_2 L_1^2 + C_0$

and where

 B_2 , B_0 , C_2 , and C_0 are expressed in terms of known quantities

Verification of geometric constraint equation

Figure 7: Possible Configurations for Numerical Example
UNIVERSITY of
FLORIDA
Center for Intellige

Potential energy constraint

 at equilibrium, the potential energy in the springs will be a minimum

$$U = \frac{1}{2} k_1 (L_1 - L_{01})^2 + \frac{1}{2} k_2 (L_2 - L_{02})^2$$

• at a minimum potential energy state,

UF FI OR IDA

$$\frac{dU}{dL_1} = k_1 (L_1 - L_{01}) + k_2 (L_2 - L_{02}) \frac{dL_2}{dL_1} = 0$$
(17)

 dL₂/dL₁ can be obtained via implicit differentiation of the geometry constraint (13) as

$$\frac{dL_2}{dL_1} = \frac{-L_1 \left[L_2^2 \left(L_2^2 + 2L_1^2 - a_{23}^2 - a_{41}^2 - a_{34}^2 - a_{12}^2 \right) + \left(a_{12}^2 - a_{23}^2 \right) \left(a_{41}^2 - a_{34}^2 \right) \right]}{L_2 \left[L_1^2 \left(L_1^2 + 2L_2^2 - a_{23}^2 - a_{41}^2 - a_{34}^2 - a_{12}^2 \right) + \left(a_{12}^2 - a_{41}^2 \right) \left(a_{23}^2 - a_{34}^2 \right) \right]}$$
(18)

Geometry and Potential energy constraints

geometry constraint

$$A L_2^4 + B L_2^2 + C = 0$$
 (13)

potential energy constraint

 $DL_{2}^{5} + EL_{2}^{4} + FL_{2}^{3} + GL_{2}^{2} + HL_{2} + J = 0$ (19)

where the coefficients D through J are polynomials in L_1

 Sylvester's elimination method can be used to identify the condition that the coefficients must satisfy in order for (13) and (19) to have common roots for L_2

- multiply (13) by L_2 , L_2^2 , L_2^3 , L_2^4

- multiply (19) by
$$L_2$$
, L_2^2 , L_2^3

UNIVERSITY of 'homogeneous' equations in 9 unknowns **Center for Intelligent Machines and Robotics College of Engineering**

Sylvester's elimination

 determinant of coefficient matrix must equal zero which yields a 28th degree polynomial in L₁

UF UNIVERSITY *of* **FLORIDA**

Numerical example

• given:

UF FIORIDA

- $\begin{array}{ll} & a_{12} = 3 \text{ in.} & a_{34} = 3.5 \text{ in.} \\ & a_{41} = 4 \text{ in.} & a_{23} = 2 \text{ in.} \\ & L_{01} = 0.5 \text{ in.} & k_1 = 4 \text{ lbf/in.} \\ & L_{02} = 1 \text{ in.} & k_2 = 2.5 \text{ lbf/in.} \end{array}$
- find L₁ and L₂ at equilibrium

Numerical Example

- results
 - coefficients of 28th degree polynomial in L₁ obtained
 - 8 real roots for L₁ with corresponding values for L₂
 - all 20 complex solution pairs (L_1 , L_2) satisfied equations (13) and (19), i.e. geometry constraint and dU/dL₁ = 0
 - 4 cases correspond to minimum potential energy

Case	L ₁ , in.	L ₂ , in.			
1	-5.4854	2.3333			
2	-5.3222	-2.9009			
3	-1.7406	-1.4952			
4	-1.5760	1.8699			
5	1.6280	1.7089			
6	1.8628	-1.3544			
7	5.1289	-3.2880			
8	5.4759	2.3938			

Numerical Example

UF FLORIDA

Let's look at a second simple problem.

- In many papers involving compliant elements, researchers assume that their springs have a free length of zero.
- How much more complicated does the problem become if the spring free lengths are not zero?

UF UNIVERSITY of

Problem Statement

- given:
 - L₁₂, p_{3x}, p_{3y}
 L₄₅, p_{6x}, p_{6y}
- 3 cases 1. $L_{01} = L_{02} = 0$ 6 2. $L_{01} \neq 0, L_{02} = 0$ 20 3. $L_{01} \neq 0, L_{02} \neq 0$ 62

- L₃ - k₁, L₀₁ - k₂, L₀₂
- find:
 - γ_1 and γ_2 for all equilibrium configurations

Case 1: Numerical Example

$$\begin{array}{l} L_{12}=6 \text{ m}, \\ p_{3x}=-1.25 \text{ m}, p_{3y}=6.887489 \text{ m}, \\ L_{45}=5.5 \text{ m}, \\ p_{6x}=-1.14 \text{ m}, p_{6y}=-3.13 \text{ m} \\ L_{3}=10 \text{ m} \\ k_{1}=2 \text{ N/m}, L_{01}=0, \\ k_{2}=3.5 \text{ N/m}, L_{02}=0 \end{array}$$

Solution #	γ ₁ , radians	γ ₂ , radians		
1	1.1787	-1.1286		
2	1.3704	2.1649		
3	-1.7201	-0.4096		
4	-2.0088	2.3924		
5	-2.7032 + 1.1498 i	-2.6012 + 2.9712 i		
6	-2.7032 - 1.1498 i	-2.6012 - 2.9712 i		

UF FLORIDA

Case 2: $L_{02} = 0$, $L_{01} \neq 0$

 $(E_1 x_2^2 + E_2 x_2 + E_3) d_1 + E_4 x_2^2 + E_5 x_2 + E_6 = 0$ $(F_1 x_2^2 + F_2 x_2 + F_3) d_1 + F_4 x_2^2 + F_5 x_2 + F_6 = 0$ $(G_1 x_2^2 + G_2 x_2 + G_3) d_1^2 + G_4 x_2^2 + G_5 x_2 + G_6 = 0$

Sylvester's Solution method

UNIVERSITY of

- First two equations are multiplied by x_2 , d_1 , and d_1x_2 , d_1^2 and $d_1^2x_2$. Third equation multiplied by x_2 , d_1 , and d_1x_2 .
- Results in 16 'homogeneous' equations in 16 unknowns.
- The determinant of the coefficient matrix must equal zero.
- Resulted in a 32^{nd} degree polynomial in x_1 .
- Divided by $(1+x_1^2)^4$ and by square of the 2nd degree polynomial corresponding to d₂ = 0.

20th degree solution

Case 2: Numerical Example

• $L_{01} = 2.3 \text{ m}$, 8 real solutions

Case 3:
$$L_{02} \neq 0$$
, $L_{01} \neq 0$

• Will obtain 4 equations of the form

$$(C_{1}x_{2}^{2} + C_{2}x_{2} + C_{3}) + (C_{4}x_{2}^{2} + C_{5}x_{2} + C_{6}) d_{2i}$$
(1)
+ $(C_{7}x_{2}^{2} + C_{8}x_{2} + C_{9}) d_{1i} = 0$

$$(D_{1}x_{2}^{2} + D_{2}x_{2} + D_{3}) + (D_{4}x_{2}^{2} + D_{5}x_{2} + D_{6}) d_{2i}$$
(2)
+ $(D_{7}x_{2}^{2} + D_{8}x_{2} + D_{9}) d_{1i} = 0$

 $(M_1 x_2^2 + M_2 x_2 + M_3) + (M_4 x_2^2 + M_5 x_2 + M_6) d_{1i}^2 = 0(3)$

 $(N_1 x_2^2 + N_2 x_2 + N_3) + (N_4 x_2^2 + N_5 x_2 + N_6) d_{2i}^2 = 0 (4)$

where the coefficients are functions of x_1

UF FLORIDA

Case 3: $L_{02} \neq 0$, $L_{01} \neq 0$

- Multiply Equations (1), (2) by
- Multiply Equation (3) by
 - {1 , d_{1i}, d_{2i}, d_{1i}d_{2i}, d_{2i}²} *{1,x₂}
- Multiply Equation (4) by
 - {1 , d_{1i} , d_{2i} , $d_{1i}d_{2i}$, d_{1i}^2 } *{1,x₂}
- Total Equations = 52
- Unknowns
 - $\begin{array}{l} \{1, \, d_{1i}, \, d_{2i}, \, d_{1i}{}^2, \, d_{2i}{}^2, \, d_{1i}d_{2i}, \, d_{1i}{}^2d_{2i} \, , \, d_{1i}d_{2i}{}^2 \, , \, d_{1i}{}^3 \, , \, d_{2i}{}^3, \\ d_{1i}{}^3d_{2i} \, , \, d_{1i}d_{2i}{}^3, \, d_{1i}d_{2i}{}^3\}^*\{x_2{}^3, \, x_2{}^2, \, x_2, \, 1\} \end{array}$

UF FLORIDA

Case 3: $L_{02} \neq 0$, $L_{01} \neq 0$

- Expansion of $|\mathbf{M}| = 0$ yielded a 104th degree polynomial in x₁.
- This can be divided by $(1+x_1^2)^{13}$ to get 78th degree polynomial in x_1 .
- Of the 78 solutions 16 were extraneous.
- 62 solutions were obtained.
- Numerical continuation method^{*} found 88 solutions (62 + 26 circular points).

* PHCpack software, Jan Verschelde, U. Illinois, Chicago

Case 3: $L_{02} \neq 0$, $L_{01} \neq 0$

- L_{01} = 5.1 m, L_{02} = 6.6309 m
- Out of the 62 solutions 38 were complex and 24 were real
- All the solutions satisfy the four equations

Case 3: Real Solutions - I

Case 3: Real Solutions - II

Conclusion

- Case 1, L₀₁ = L₀₂ = 0

 6 solutions
- Case 2: L₀₂ = 0, L₀₁ ≠ 0
 20 solutions
- Case 3: L₀₂ ≠ 0, L₀₁ ≠ 0
 62 solutions

Back to the primary problem.

- given:
 - strut lengths
 - top tie lengths
 - bottom tie lengths
 - spring constant and free length of side ties
- find:
 - all equilibrium configurations

How to structure the problem?

First, attempt to solve the problem when all the spring free lengths equal zero.

UF FLORIDA

Problem Formulation

This formulation was selected to avoid any need to use tan half-angle substitutions to convert trigonometric functions into polynomials.

Example

Three strut tensegrity where spring free lengths equal zero.

There are 9 unknowns, i.e. X_j , Y_j , Z_j , j=1..3.

There are 9 constraint equations:

$kk \Delta^{23} \Delta \Delta +=$	-		0		
$kk_{22} \xrightarrow{3332} \Delta \Delta +=$	=		0		
$k_{k_3} \Delta \Delta +=$	=		0		
)	()	2	0
$(X_{X_2} + Z_2)^{222} = ($)	()	2	С
)	()	2	0
$(X_{x_{2}} \xrightarrow{p_{1}} \xrightarrow{Z_{2}} \xrightarrow{Z_{2}}$)	()	2	0
)	()	2	0
$\left(X_{x_{1}} \underbrace{X_{x_{1}}}_{3} \underbrace{Z_{x_{2}}}_{3} Z_{x_{2$)	()	2	0

Numerical Example

Three strut tensegrity

- $a_1=10$, $a_2=12.3$, $a_3=15$ cm
- $s_1 = 20$, $s_2 = 23$, $s_3 = 10.5$ cm
- $k_1 = 3.8, k_2 = 3, k_3 = 4.3$ N/cm
- The homotopy continuation method* was used to solve the set of 9 equations in 9 unknowns.
- 10 real configurations were obtained which satisfy the 9 equations (160 complex solutions obtained)
- PHCpack , http://www.math.uic.edu/~jan/download.html Jan Verschelde, Univ. of Illinois at Chicago UF FIORIDA

2nd Order Analysis

- A 2nd order analysis was conducted to classify the real solutions as
 - stable equilibrium
 - unstable equilibrium
 - neutral equilibrium
 - a small perturbation will continuously deform the structure to another neutral equilibrium state
 - have a statically balanced mechanism
- The equilibrium study becomes the examination of the positive definiteness of the Hessian matrix of the Lagrangian function *w*.

Numerical Example (cont)

stability analysis

- of the 10 real solutions
 - 1 is unstable (negative definite Hessian)
 - 7 are directionally stable (indefinite Hessian)
 - 2 are stable (positive definite Hessian)

unstable case

Numerical Example (cont)

stability analysis

- of the 10 real solutions
 - 1 is unstable (negative definite Hessian)
 - 7 are directionally stable (indefinite Hessian)
 - 2 are stable (positive definite Hessian)

- 28th degree univariate polynomial
- numerical example had 8 real roots, 4 of which were stable equilibrium
- 1 of the 4 stable equilibrium had both spring lengths > 0

- Case 1, L₀₁ = L₀₂ = 0

 6 solutions, 4 real
- Case 2: L₀₂ = 0, L₀₁ ≠ 0
 20 solutions, 8 real
- Case 3: $L_{02} \neq 0$, $L_{01} \neq 0$
 - 62 solutions, 24 real
 - problem formulation has extraneous roots

- free lengths equal zero
- 9 equations in 9 unknowns
- continuation method yielded 10 real and 160 complex solutions
- 2 cases were in stable equilibrium