Archive | Linkage Animations

Animations of linkage movement.

A four-bar linkage provides a shape changing extrusion die

Fourbar Extrusion

Fourbar Extrusion

Prof. Andrew Murray and his team at the Design of Innovative Machines Laboratory have developed a dynamic extrusion die that changes shape while in operation. This provides a new capability for rapid manufacture of innovative geometry for metal and plastic bars, channels, hoses, and more. For more information see his laboratory website, University of Dayton DIMLab.

YouTube Preview Image

This video provides an extreme introduction to the DIM Lab at the University of Dayton.

YouTube Preview Image
0

Walking Machines

Leg Mechanisms

Leg Mechanisms

An outcome of Mark Plecnik’s research on the kinematic synthesis of six-bar linkages is a variety of designs for the leg mechanisms of small walking machines.

We hope to build this walker over the summer. It has one drive motor on each side:
YouTube Preview Image

This is my favorite because it couples the legs on one side with a pantograph linkage. The leg joints are living hinges. and it seems this the entire leg system can be cut from a single sheet of plastic:
YouTube Preview Image

This is a design study for a walker with eight legs on one side, 16 total:
YouTube Preview Image

0

Four-bar function generator: Open a door

Four-bar function generator

Four-bar function generator

Select this link, Four-bar linkages, for a Geogebra book that illustrates linkages ranging from a lever to a crank-rocker that open a door. This includes the construction of a four-bar linkage that coordinates the open and closed positions with specific input crank angles, called a four-bar function generator. The iPad application, MechGen FG, computes four-bar function generators for five coordinated values of the input and output cranks.

0

Long-travel six-bar vehicle suspension

Long travel suspensions

Long travel suspensions

Mark Plecnik has applied his research on the design of six-bar linkage function generators to the challenge of a long travel independent suspension for an off-road vehicle. UCI race car engineering students built a 1/5 scale model of his latest design and compared its performance to his calculated design. For more detail see his video:

YouTube Preview Image
0

Linkage Design for Wing Flapping

YouTube Preview Image
Mark Plecnik shows that six-bar function generators can be used to drive a serial chain and produce a realistic wing flapping gait. Using trajectories obtained through video analysis by researchers Bret W. Tobalske and Kenneth P. Dial, “Flight Kinematics of Black-billed Magpies and Pigeons Over A Wide Range of Speeds,” Mark constructed functions for the joints of the serial chain, designed the function generators, and animated the results. Select this link for more information on Mark Plecnik and his work.

0

Powered by WordPress. Designed by Woo Themes